
1

Seventh FRAMEWORK PROGRAMME
FP7-ICT-2007-2 - ICT-2007-1.6

New Paradigms and Experimental Facilities

SPECIFIC TARGETED RESEARCH OR INNOVATION
PROJECT

Deliverable D2.3

“Low-level design specification of the machine
learning engine”

Project description

Project acronym: ECODE
Project full title: Experimental Cognitive Distributed Engine
Grant Agreement no.: 223936

Document Properties

Number: TBD
Title: Low-level design specification of the machine learning engine
Responsible: TBD
Editor(s): Damien Saucez
Contributor(s): Chadi Barakat, Olivier Bonaventure, François Cantin, Pedro Casas
Hernandez, Didier Colle, Benoit Donnet, Pierre Geurts, Amir Krifa, Guy Leduc, Pierre
Lepropre, Yongjun Liao, Johan Mazel, Philippe Owezarski, Dimitri Papadimitriou,
Bart Puype and Damien Saucez
Dissemination level: Public (PU)
Date of preparation: 20th Sept. 2011
Version: 1.0

2

Deliverable D2.3 - Executive Summary

This deliverable is part of WP2 (Cognitive network & system architecture and design).

The feasibility, benefits and applicability of introducing a cognitive engine in the
ECODE architecture are decomposed by using a number of use cases covering different
problem areas identified as Internet architectural and design challenges. The Delivrable
D2.1 describes the adaptive traffic sampling use case that allow one to efficiently moni-
tor the traffic by adapting the rate at which the traffic is sampled by the monitoring tool.
The cooperative intrusion and attack (or anomaly) detection systems forms the second
use case. The anomaly detection use case allows the network to detect anomalies which
can trigger a reaction from the network to solve or protect against the anomaly. A third
use case is for path availability. This use case relies on the so-called IDIPS server.
IDIPS ranks Internet paths based on their characteristics, such as delays, or available
bandwidth. Finally, a use case that provides efficient network recovery and resiliency
is provided in deliverable D2.1. This use case allows the network to effectively recover
from an anomaly.

Delivrable D2.1 specifies an architecture that supports the cognitive routing system.
Delivrable D2.2 specifies the software architecture of the machine learning engine. This
architecture is called the ECODE Unified Architecture (EUA) and is implemented on
the XORP routing platform. This delivrable D2.3 consolidates the EUA specification
and presents the implementation of the different use cases studied in deliverables D3.3,
D3.5, and D3.7. The quality of the implementation of these use cases in the EUA is
studied in this deliverable.

Based on the implementation of the different use cases and their evaluation, we can
conclude of the success of the ECODE Unified Architecture proposed in deliverable
D2.2.

3

List of Authors

ALB Dimitri Papadimitriou
IBBT Didier Colle and Bart Puype
INRIA Chadi Barakat and Amir Krifa
LAAS Pedro Casas Hernandez, Johan Mazel and Philippe Owezarski
UCL Olivier Bonaventure, Benoit Donnet and Damien Saucez

ULg François Cantin, Pierre Geurts, Guy Leduc, Pierre Lepropre,
Yongjun Liao

4

List of Figures

2.1 Adaptive sampling system design. 8

3.1 High-level description of NEWNADA. Module 1 is responsible for the
Multi-Resolution Change-Detection algorithm of NEWNADA. Module
2 performs the Unsupervised Machine-Learning based Analysis of the
traffic flows highlighted by Module 1. Finally, Module 3 Characterizes
the detected anomalies. 15

3.2 Low-intensity anomalies might be hidden inside highly aggregated traf-
fic, but are visible at finer-grained aggregations. The DDoS attack is
evident at the victim’s network. 18

3.3 Multi-Resolution Change-Detection (MRCD) module functionalities and
interactions. 18

3.4 MRCD traffic capture sub-module API. 19

3.5 MRCD abrupt change detection sub-module API. 19

3.6 MRCD features computation sub-module API. 20

3.7 Sub-Space Clustering: 2-dimensional sub-spaces X1, X2, and X3 are
obtain from a 3-dimensional feature space X by simple projection. Units
in the graph are irrelevant. 21

3.8 Unsupervised Analysis (UA) module functionalities and interactions. . . 23

3.9 UA sub-spaces computation sub-module API. 24

3.10 UA DBSCAN clustering sub-module API. 24

3.11 UA Evidence Accumulation EA4C and EA4O sub-modules API. . . . 25

3.12 UA Anomaly Characterization sub-module API. 25

3.13 NEWNADA XORP processes within the EUA. 26

3.14 MRCD Monitoring Point XORP process. 27

3.15 MRCD Monitoring Point process XRL interface. 28

3.16 UAD Machine Learning XORP process. 28

3.17 UAD Machine Learning Process XRL interface. 29

4.1 IDIPS within the EUA . 32

4.2 IDIPS server API for synchronous mode clients 34

5

6 LIST OF FIGURES

4.3 IDIPS server API for asynchronous mode clients 35

4.4 One-by-one path ranking retrieval algorithm 37

4.5 Measurement module API . 37

4.6 Prediction module API . 38

4.7 Example of modules interactions in IDIPS 40

4.8 Querying module XRL interface . 43

4.9 Measurement module XRL interface 44

4.10 Prediction module XRL interface . 45

4.11 Measurement module loop method pseudo-code 50

4.12 UDP ICMP port unreachable management 50

5.1 High-level flowchart for normal OSPF LSA processing 54

5.2 High-level flowchart for SRG inference 55

5.3 Information model . 56

5.4 Outline of SRG table . 57

5.5 OSPF process flow . 58

5.6 Correlating incoming LSAs with old link-state database to find failing
links . 59

5.7 Link failure detection and failing links update 59

5.8 Correlating update link-state database and set of SRG links to find list
of failing links of interest . 60

5.9 Use of set of failing links in pruning the shortest-path table 60

5.10 Use of set of failing links in pruning the shortest-path table 61

5.11 Implementation of state in OSPF module 62

5.12 Structure of router LSA and contained router links 63

5.13 Example of OSPF (left) and MLP (right) interaction in time 64

5.14 XRL interface for receiving link failure reports 64

5.15 XRL interface for the SRG monitoring point 65

5.16 Changes to the OSPF interface (partial) 66

5.17 High-level comparison of Xorp 1.6 (left) and EUA/Xorp 1.8 (right) im-
plementation . 66

5.18 Distributed/centralized SRG inference scenarios 67

Table of contents

1 Introduction 1
1.1 Scope of Deliverable . 1

1.1.1 Use cases . 3

1.1.1.1 a1) Adaptive traffic sampling 3

1.1.1.2 a3) Cooperative intrusion and attack / anomaly detec-
tion . 3

1.1.1.3 b1) Path availability and IDIPS 4

1.1.1.4 b2) Network recovery & resiliency / OSPF SRG in-
ference . 5

1.2 Structure of Document . 5

2 Adaptive traffic sampling 7
2.1 Introduction . 7

2.2 System design . 8

2.3 Implementation . 9

2.4 Conclusion . 11

3 Cooperative intrusion and attack / anomaly detection 13
3.1 Introduction . 13

3.2 System design . 14

3.2.1 Multi-Resolution Change-Detection (MRCD) Module 16

3.2.2 Unsupervised Analysis Module 20

3.2.3 Characterization Module . 24

3.3 Implementation . 27

3.4 Conclusion . 29

4 Path availability and IDIPS 31
4.1 Introduction . 31

4.2 System design . 31

4.2.1 Querying module . 33

i

4.2.2 Measurement Module . 37

4.2.3 Prediction Module . 38

4.3 Implementation . 39

4.3.1 High Level Cost Functions Implementation 45

4.3.2 Examples of IDIPS module implementation 48

4.4 Conclusion . 51

5 Network recovery & resiliency / OSPF SRG inference 53
5.1 Introduction . 53

5.2 System design . 54

5.3 Implementation . 57

5.4 Conclusion . 67

6 Conclusion 69

References 69

ii

Chapter 1

Introduction

1.1 Scope of Deliverable

This deliverable is part of WP2 (Cognitive network & system architecture and de-
sign), which is a research and technological development activity. The overall objective
of this work package is to design a cognitive routing system and engine by combining
machine learning and networking techniques in order to efficiently address the future In-
ternet challenges. This cognitive routing engine will enhance the existing routing system
by combining machine learning methods that allow it to derive a number of observations
from the data collected by its routing and forwarding engines and its interactions with
other cognitive routing engines.

The overall objective of this work package is drawn (i) from a set of networking use
cases representative of the Internet challenges, and referred to as technical objectives,
and (ii) from applying novel machine-learning mechanisms (by designing a cognitive
engine) to these use cases so as to address these challenges.

The first technical objective requires to develop adaptive methods for traffic sam-
pling in core networks in order to take the appropriate actions either at the router level
or the network-wide level (based on the sampling and processing results). It is also
necessary to monitor the path performances (e.g., delay, loss rate, etc.) Monitoring is
performed by means of a collaborative measurement tool that can be used to determine
the best suited routing strategies. Finally, a cooperative intrusion and attack / anomaly
detection system is required. It consists on a distributed tool enabling anomaly, attack,
and intrusion detection by monitoring traffic and detecting changes in the measure-
ments. The second technical objective aims at determining the availability of the paths
and their qualities. If a path is not reachable anymore, a resiliency mechanism ensures
that the network recovers from the failure. Finally, the third technical objective aims at
enforcing the quality requirements in a scalable way. To achieve these objectives, the
architecture is composed of four parts:

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 1

Data collection provides the appropriate interfaces for packet capture and conversion,
for fast reaction by means of on-line processing (e.g., through adaptive packet
sampling) as well as validation of the decisions by means of off-line processing.
It also determines the relevant alternate source of information (e.g., routing ta-
ble entries, routing information updates, daemon logs, active measurement tools)
and designs interface to export meaningful events for further processing. Finally,
it proposes flexible mechanisms to extract relevant information from captured
packet or events and builds corresponding information tuples that will serve as
input to the machine learning algorithms (processing function).

Interpretation provides mechanisms for online verification and notification of ma-
chine learning output accuracy and determines whether prior knowledge can be
used or if the knowledge must be updated with new measurements.

Control determines the suitable hook points in the routing engine/forwarding engine
or interfaces for passing decision(s) from the machine learning algorithms. It also
determines the set of actions to take to meet the expected behavior.

Cooperation and Distribution determines the techniques cooperation between the dif-
ferent engines and the distribution of the processing between the “peers” and de-
termines how to exchange the “knowledge”, e.g., learned rules, between peers.

In a first phase (Task_2.1), WP2 has provided the network and system architec-
ture framework that realizes the networking technical objectives listed here above by
means of novel machine learning mechanisms techniques. This architecture defined the
interaction between the routing platform components and the machine learning (cog-
nitive) components. This architecture has been incrementally reviewed as results from
experimentation phase 1 (WP3) were obtained. In a second phase (Task_2.2), at the
middle of the project timeline, a low-level cognitive engine system has been designed.
This cognitive engine has been experimented during the experimentation phase 2 of the
project as part of WP4. In a third phase (Task_2.3), at the end of the project, a consoli-
dated cognitive engine design has been proposed (resulting from experimentation) that
enables knowledge exchange and synchronization with other cognitive engines. The
architecture supporting this cognitive routing system is specified in deliverable D2.1.
An experimental prototype is implemented on the XORP routing platform as detailed
deliverable D2.2 and consolidated by the present document. XORP is an open source
routing platform. XORP provides a fully featured control-plane platform that imple-
ments routing protocols and a unified platform to configure them. XORP’s modular
architecture allows rapid introduction of new protocols, features, and functionalities.
Our prototypes are implemented on top of the ECODE Unified Architecture (EUA) de-
fined in deliverable D2.2. The EUA is a distributed-capable XORP extension aiming at
realizing technical experiments.

This deliverable D2.3 documents the experimentally validated software architecture
and its companion toolbox library of methods and components as well as a clear descrip-
tion of the interfaces and components that would allow implementation of interoperable
parts by third-party developers. This deliverable describes the design of the learning

modules (together with their companion toolbox library of learning methods and com-
ponents) implemented to run as part of ECODE XORP-based platform documented in
deliverable D2.2. The present document provides a detailed description of the interfaces
and components that would allow implementation of interoperable parts by third-party
developers. The experimental validation of the software architecture presented in deliv-
erable D2.2 together with the experimental results that can be obtained by means of the
modules, interfaces and components presented in this deliverable are included as part of
deliverable D4.3.

1.1.1 Use cases

Delivrable D2.1 describes the following use cases necessary to meet the technical
objectives:

1.1.1.1 a1) Adaptive traffic sampling

Traffic measurement and analysis are crucial management activities for network op-
erators. With the increase in traffic volume, operators resort to sampling primitives to
reduce the measurement load. Unfortunately, existing systems use sampling primitives
separately and configure them statically to achieve some performance objective. It be-
comes then important to design a new system that combines different existing sampling
primitives together to support a large spectrum of monitoring tasks while providing the
best possible accuracy by spatially correlating measurements and adapting the config-
uration to traffic variability. In this use-case, we introduce a new adaptive system that
combines two sampling primitives, packet sampling and flow sampling, and that is able
to satisfy multiple monitoring tasks. Our system is general enough to account for other
sampling primitives and for a diversity of monitoring tasks, either separately or jointly
(accounting, large flow detection, flow counting, etc). It consists of two main functions:
(i) a global estimator that investigates measurements done by the different sampling
primitives inside routers in order to deal with multiple monitoring tasks and to construct
a more reliable global estimator while providing visibility over the entire network; (ii)
an optimization method based on overhead prediction that allows to reconfigure moni-
tors according to accuracy requirements and monitoring constraints.

1.1.1.2 a3) Cooperative intrusion and attack / anomaly detection

The Unsupervised Network Anomaly Detection Algorithm (NEWNADA) is pro-
posed to meet the objective of automatic detection and characterization of intrusions
and attacks/anomalies. NEWNADA [MCO11] is a completely unsupervised approach
to detect and characterize network attacks, intrusions, and anomalies, without relying
on signatures or labeled traffic of any kind. The proposed approach permits to detect
both well-known as well as completely unknown attacks, and to automatically produce
easy-to-interpret signatures that characterize them. Unsupervised detection is accom-

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 3

plished by means of robust data-clustering techniques, combining Sub-Space Clustering
[PHL04], Density-based Clustering [EKSX96], and multiple Evidence Accumulation
[FJ05] algorithms to blindly identify anomalous traffic flows. Based on the observation
that network attacks, and particularly the most difficult ones to detect, are contained in
a small fraction of aggregated flows with respect to normal-operation traffic [ACP09],
their unsupervised detection consists in the identification of outlying traffic flows, i.e.
flows that are remarkably different from the majority. Unsupervised characterization
is achieved by exploring inter-flows structure from multiple outlooks, building filtering
rules to describe a detected anomaly.

NEWNADA works in a completely unsupervised fashion, which means that it can
be directly plugged-in to any monitoring system and start to detect anomalies from
scratch, without any kind of calibration. The algorithm analyzes traffic captured at a
single-link, producing easy-to-interpret signatures that characterize a detected anoma-
lous traffic event. This permits to reduce the time spent by the network operator to
understand the nature of a detected anomaly. In addition, the automatically produced
signatures can be directly exported towards standard signature-based security devices
like IDSs, IPSs, and/or Firewalls to rapidly detect the same anomaly in the future. NEW-
NADA is designed to work in an on-line basis, analyzing traffic captured at consecutive
time slots of fixed duration.

1.1.1.3 b1) Path availability and IDIPS

ISP-Driven Informed Path Selection (IDIPS) is proposed to meet the path availability
and performance objectives. IDIPS is generic as it can be used in many networking
contexts without changing anything to its behavior. IDIPS is scalable, lightweight, and
designed to be easily deployed.

IDIPS is designed as a request/response service. The network operators deploy
servers that are configured with policies and that collect routing information (e.g., OSPF,
BGP) and measurements towards popular destinations. The clients that need to select
a path send requests to an IDIPS server. A request contains a list of sources, a list of
destinations, and a traffic qualification that determines the rule for ranking the paths to
use. The client already knows the different paths it needs to rank. The server replies
with an ordered list of < source, destination, rank > tuples to the client. The reply
gives an indication of the ranking lifetime. This ranking is based on the current network
state and policies. The client will then use the first pairs of the list and potentially switch
to the next one(s) in case of problems or if it wants to use several paths in parallel.

1.1.1.4 b2) Network recovery & resiliency / OSPF SRG inference

SRG inference is used to identify shared risk groups from network element failure
history. Through clustering and data-mining of failure occurences, a predictive model is
built which allows inferring the failure of an SRG upon the detection of a first (second ...)
network element failure. Since failure detection in routing protocols such as OSPF
requires time in the order of seconds and recover network element one-by-one, SRG
inference allows for faster recovery by rerouting around the inferred failing elements
pre-emptively.

The OSPF SRG inference system works by setting up a two-directional commu-
nications path between the OSPF module and the machine learning inference module.
This interaction requires two changes to the standard OSPF module. The link-state ad-
vertisement algorithm is changed such that link failures are detected and reported to
the inference module. Also, the OSFP module interface is changed such that it can
accept inference information; the rerouting process is adapted to take this information
into account, routing around links when they are part of an inferred SRG during initial
detection of failure(s).

1.2 Structure of Document

Chapter 2 addresses the problem of monitoring traffic at high rate and for different
sampling rates. To do so, an adaptive traffic sampling is applied. The sampling rate is
adapted dynamically to optimally monitor the flows. Monitoring at optimal sampling
rate ensure a minimum usage of resources even when several independent monitoring
tasks are run in parallel.

Chapter 3 addresses the problem of automatically detecting and characterizing in-
trusions and attacks. The strength of the proposed solution is that the detection and
characterization is performed without prior knowledge and does not require any super-
vision. To to do so, the architecture uses data clustering. The characterization can be
use to automatically generate signatures that are useful for intrusion detection systems.

Chapter 4 presents the architecture of the ISP-Driven Informed Path Selection (IDIPS).
IDIPS is a service that aim at ranking paths based on their performances. IDIPS mon-
itors the networks to predict the future path behavior. The prediction can be used to
determine the quality of the paths and thus rank them for the clients to select the paths
that will provide the best performance.

Chapter 5 presents novel technique for fast network failure recovery and improve-
ment of routing path resiliency. The proposed system uses advanced machine learning
techniques to infer the shared risk groups (SRG) inside a network. The implemented
system improves re-routing time in case of failure and thus network resiliency. Indeed,
with current link state protocols, simultaneous link failures resulting from an SRG fail-
ure can trigger multiple successive routing table entries re-computation, one to address
each of the link failure. Failing to account SRG failures during routing table entries re-

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 5

computation leads to longer recovery time and thus, higher magnitude of packet losses
compared to the situation where the set of links (associated to the SRG failure) results in
a single re-computation of all routing tables entries affected by the failure. Instead, if the
router learns about the existence of SRGs from the arriving link state updates, then deci-
sions regarding SRG failure can be taken promptly to avoid successive re-computations
of alternate shortest paths across the updated topology.

Finally, Chapter 6 concludes this deliverable. It summarizes the main contributions
and describes some additional work that can be realized thanks to the achievements of
the ECODE project.

Chapter 2

Adaptive traffic sampling

2.1 Introduction

The importance of passive traffic measurements for the understanding and diagnosis
of core IP networks has led to a considerable evolution in the number and quality of
monitoring tools and techniques. Recently, numerous monitoring primitives have been
proposed in order to achieve a large number of network management tasks. The spec-
trum is broad covering among others flow sampling [HV03], sample and hold [EV02]
and packet sampling [CIB+06]. Currently, NetFlow [Cis00] is the most widely deployed
measurement solution by ISPs. However, this solution still presents some shortcomings,
namely the problem of accurately configuring sampling rates according to network con-
ditions (and in particular, in the increasing trend in line speed) and the requirements of
monitoring applications.

Numerous solutions exists that provide a balance between scalability (respecting
the resource consumption constraints) and accuracy, many works have investigated the
existing sampling primitives and have used them to build network-wide monitoring sys-
tems that coordinate responsibilities between the different monitors. These solutions
rely on systems that use single sampling primitives to achieve specific management ap-
plications. However, none of these systems is optimized to achieve a general class of
monitoring tasks and to combine different sampling primitives. In order to solve these
limitations, some proposals have presented simple combination of existing sampling
primitives in order to achieve a larger class of tasks. For instance, the authors in [VS10]
combine a small number of simple and generic router primitives that collect flow-level
data to estimate traffic metrics, while the authors in [KME05] use a combination of flow
sampling and sample-and-hold to provide traffic summaries and detect resource hogs.
The novel monitoring system we propose in ECODE is able to integrate various existing
monitoring primitives (namely, packet sampling and flow sampling) in order to support
multiple monitoring tasks, namely flow counting, flow size estimation and heavy-hitter
detection. This system is not only able to combine different sampling primitives, but
more importantly can adapt their contribution in a way to maximize the global measure-
ment accuracy at limited overhead. Different monitoring applications will automatically

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 7

Figure 2.1: Adaptive sampling system design.

lead to different tuning of the sampling primitives.

2.2 System design

Figure 2.1 depicts the basic functional components of the proposed monitoring sys-
tem together with the interactions among them. The system relies on existing NetFlow-
like local measurement tools (Monitoring Engine (ME)) deployed in network routers.
We chose to use two complementary sampling primitives: (i) Flow Sampling (FS) which
is well suited for security and anomaly detection applications that require analyzing the
flow communication structure, and (ii) Packet Sampling (PS) which is well suited for
traffic engineering and accounting applications based on the traffic volume structure,
e.g., heavy-hitter detection and traffic engineering that require an understanding of the
number of packets/bytes per-port or per-prefix [VS10].1

Our system extends these local existing monitoring tools (MEs) with a centralized
network-wide cognitive engine (CE) that drives its own deployment by automatically

1While packet sampling consists in capturing a subset of packets independently of each other, flow
sampling consists in capturing flows independently of each other. Once a flow is captured by flow sam-
pling, all its packets are captured and analyzed. The decision to capture a flow or not is done at the
beginning of the flow.

and periodically reconfiguring the different monitors in a way to improve the overall
accuracy (according to monitoring application requirements) and reduces the resulting
overhead (respecting some resource consumption constraints, typically the volume of
measurements).

The cognitive engine of our network-wide system comprises two main modules (i)
the global estimator (GE) engine that combines measurements and estimates network
traffic to provide a global more accurate estimation, and (ii) the reconfiguration engine
(RE) that dynamically adjusts the sampling rates in routers. The GE engine extends
local existing monitoring tools (MEs) with a network-wide inference engine that com-
bines their measurements to support a large spectrum of applications and provide more
accurate results. Given a set of measurement tasks T to realize, this inference engine
investigates the local measurements made by the different routers to obtain a global
and more reliable view. The RE, given a list of measurement tasks T and an overhead
constraint measured in terms of reported NetFlow records (Target Overhead TO), adap-
tively adjusts its configuration of the sampling primitives according to the requirements
of the multiple tasks while tracking short-term and long-term variations in the traffic.
A configuration is a selection of sampling rates of the different primitives on the dif-
ferent interfaces of network routers (or monitors). This configuration is periodically
updated as a function of the overhead and in a way to optimize the accuracy of the con-
sidered measurement tasks. Further details concerning these computational procedures
executed by these modules can be found in Deliverable D3.3.

2.3 Implementation

For efficiency and compatibility reasons (e.g., NetFlow can potently run on switches
or dedicated devices), the adaptive traffic sampling is not implemented directly in the
EUA. However, the different cognitive elements that one could implement in the EUA
can interact with our adaptive traffic sampling module natively within the EUA. To
do so, we have implemented a wrapper that makes the link between the EUA and the
adaptive traffic sampling module. The wrapper is implemented directly in the EUA
and communicates with the adaptive module with over UDP. The role of the wrapper
is to translate the XRL requests received in the EUA into primitives understood by the
adaptive traffic sampling module. The rest of this section presents the XRLs that can
be used by an EUA element to interact with the adaptive traffic sampling. The XRL
directly correspond to the primitives of our sampling module.

The following two functions can be used to retrieve the optimally sample NetFlow
reports. The returned NetFlow reports are filtered according to the parameters provided
at the function call.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 9

get_5tuple_flows_report
? sourceip & destinationip & sourceport
& destinationport & protocol
-> report

get_ipsource_ipdest_flows_report
? source & destination
-> report

get_5tuple_flows_report returns reports filtered to only provide informa-
tion about the flows that match the 5 tuples (i.e., source IP, destination IP, source port,
destination port and protocol).

get_ipsource_ipdest_flows_report filters the reported flow on their<source
IP, destination IP> address pair.

The following two functions allow one to interact with the sampling rate.

get_current_sampling_rate
? interface
-> rate

change_current_sampling_rate
? interface & sa & sb
-> ack

get_current_sampling_rate returns the current sampling rate used at a par-
ticular interface (softflowd should be running on this interface).

change_current_sampling_rate changes the sampling rate used at an in-
terface. The new sampling rate is set to sa

sb
.

The following two functions aggregate information based on NetFlow reports.

get_aggregated_sent_bytes_for_ipdest
? destination
-> sentbytes

get_ipsource_ipdest_flows_report_filter
? source & destination & srcfilter & dstfilter
-> report

get_aggregated_sent_bytes_for_ipdest provides the total number of
bytes monitored for a given destination.

get_ipsource_ipdest_flows_report_filter aggregates into one sin-
gle NetFlow record the information that correspond to all the flows matching the source
and destination addresses. This function has the particularity to accept source and desti-
nation filters. These filters are applied on the source and destination address. The filters
are used to implement prefix exact matching instead of IP address matching. The report
is formatted as follow: “srcAdr dstAdr totalNbrPackets totalNbrBytes minStartTime
maxStartTime”.

2.4 Conclusion

We have presented an adaptive system that combines different existing sampling
primitives in order to support a large spectrum of monitoring tasks while providing the
best possible accuracy. Our system coordinates responsibilities between the different
monitors and shares resources between the different sampling primitives. Our system is
practical and provides a flexible optimization method based on overhead prediction that
reconfigures monitors according to monitoring applications requirements and network
conditions.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 11

Chapter 3

Cooperative intrusion and attack /
anomaly detection

3.1 Introduction

The Unsupervised Network Anomaly Detection Algorithm (NEWNADA) is an un-
supervised machine-learning based system conceived to meet the objective of automatic
detection and characterization of intrusions and attacks/anomalies within ECODE. NEW-
NADA is composed of three different modules. First, a monitoring Multi-Resolution
Change-Detection module captures traffic in real-time and looks for anomalous changes
in basic traffic descriptors. Second, an Unsupervised Machine-Learning based Analysis
module uses a robust multi-clustering algorithm to identify the set of responsible traffic
flows without relying on signatures or calibration. Finally, a Characterization module
automatically produces a set of filtering rules to correctly isolate and characterize the
identified anomalous flows.

NEWNADA is a traffic analysis system that permits to identify previously unknown
anomalous traffic behaviors without relying on signatures or calibration. The system
permits to rank the degree of abnormality of a set of traffic flows going through a mon-
itored network link. In addition, NEWNADA provides a summary of the most relevant
traffic descriptors that characterize the top-ranked flows in the form of anomalous traf-
fic signatures. Such signatures permit to automatically separate the interesting traffic
events from the normal-operation traffic, dramatically simplifying network monitoring
tasks. The information provided by NEWNADA permits not only to pinpoint anoma-
lous traffic flows, but also to rapidly understand the nature of the anomaly and therefore,
to rapidly apply accurate and adapted countermeasures.

This chapter is decomposed in two parts. On the one hand, Sec. 3.2 describes the
modules, their design and interactions. On the other hand, the modules implementation
within the EUA is described in Sec. 3.3.

An evaluation of NEWNADA with real traffic containing different types of network
attacks, including DDoS, worms, and buffer-overflow attacks can be found in D4.3.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 13

3.2 System design

In this section we describe the design of our Unsupervised Network Anomaly De-
tection system within the EUA. NEWNADA runs in three consecutive steps, analyzing
packets captured in a single-link at consecutive time slots of fixed duration. Fig. 3.1 de-
picts a modular, high-level description of NEWNADA’s design. Each of the three mod-
ules is responsible for one of the three consecutive monitoring and analysis tasks. The
first step is accomplished by the Multi-Resolution Change-Detection module, and con-
sists in detecting an anomalous time slot in which the unsupervised machine-learning
based analysis will be performed. For doing so, packets captured at each time slot are
aggregated in standard 5-tuples IP flows. IP flows are additionally aggregated at dif-
ferent resolution levels in what we shall refer to as macro-flows, using network prefix
and IP address (either IPsrc or IPdst). A macro-flow represents all the IP flows coming
from or directed towards the same sub-network or network host.

Different time series are then constructed for consecutive time slots, using simple
traffic metrics such as number of bytes, number of packets, number of macro-flows,
and number of SYN packets per time slot. A basic change-detection algorithm based
on absolute deltoids [CM05] is finally used to detect an anomalous behavior in these
multiple time-series. Tracking anomalous behaviors from multiple metrics and at mul-
tiple resolutions (i.e. /8, /16, /24, /32 network mask) provides additional reliability
to the change-detection algorithm, and permits to detect both single source-destination
and distributed anomalies of very different characteristics. Sec. 3.2.1 presents additional
details on this module.

The second step takes as input ALL the n macro-flows contained in the time slot
flagged as anomalous (i.e., no filtering or flow-removing process is performed by the
first module). Each of these macro-flows is described by a set of m traffic attributes
or traffic features, like number of source hosts, number of destination ports, or packet
rate. Let X ∈ Rn×m be a matrix of traffic features, describing the n different macro-
flows. The Unsupervised Machine Learning based Analysis module detects outlying
macro flows in X (i.e., macro-flows which are remarkably different from the rest) us-
ing a robust multi-clustering algorithm, based on a combination of Sub-Space Cluster-
ing (SSC) [PHL04], Density-based Clustering [EKSX96], and Evidence Accumulation
Clustering (EAC) [FJ05] techniques. NEWNADA’s clustering algorithm is capable of
identifying anomalous traffic structures and to rank their degree of rareness within the
m-dimensional features’ space generated by the set of m traffic features.

The selection of the m features used in X to describe the macro flows is a key is-
sue to any anomaly detection algorithm, but it becomes critical and challenging in the
case of unsupervised detection, because there is no additional information to select the
most relevant set. In general terms, using different traffic features permits to detect dif-
ferent types of anomalies. In current version of NEWNADA we shall limit our study
to detect well-known attacks (DDoS, worms, buffer-overflow attacks, etc.), using a set
of standard traffic features widely used in the literature. However, NEWNADA can be
easily extended to detect other types of anomalies, considering different sets of traffic
features. In fact, more features can be added to any standard list to improve detection

X

.

P1

P2

Pn

X1 X2 Xn.

Computation of Features

SSC Network

Anomalies

1

2

3

4

n

Evidence

Accumulation

(EA)

(1) EA for Outliers

(2) EA for Clusters

+ Signatures

Y

F

Change Detection

Network Traffic

Monitoring

z1

z2

z3

Multi

Resolution

Flow

Aggregation

Network OperatorTdetection threshold

Density-based

Clusteing

Network Security Devise

IDS, IPS, Firewall, etc.

Module 1

Module 2

Module 3

Figure 3.1: High-level description of NEWNADA. Module 1 is responsible for the
Multi-Resolution Change-Detection algorithm of NEWNADA. Module 2 performs the
Unsupervised Machine-Learning based Analysis of the traffic flows highlighted by
Module 1. Finally, Module 3 Characterizes the detected anomalies.

results. In fact, more features can be added to any standard list to improve detection
results. For example, we could use the set of traffic features generally used in the traf-
fic classification domain [WZA06] for our problem of anomaly detection, as this set is
generally broader; if these features are good enough to classify different traffic appli-
cations, they should be useful to perform anomaly detection. The main advantage of
the Unsupervised Machine Learning based Analysis module of NEWNADA is that we
have devised an algorithm to highlight outliers respect to any set of features, and this is
why the algorithm is highly applicable.

For example, according to previous work on signature-based anomaly characteriza-
tion [FO09], simple traffic features such as number of source/destination IP addresses
and ports (nSrcs, nDsts, nSrcPorts, nDstPorts), ratio of number of sources to num-
ber of destinations, packet rate (nPkts/sec), average packet size (avgPktsSize), and
fraction of ICMP and SYN packets (nICMP/nPkts, nSYN/nPkts) permit to describe
standard network attacks such as DoS, DDoS, scans, and spreading worms/virus.

Table 3.1 describes the impacts of different attacks on the aforementioned traffic
features. All the thresholds are introduced to better explain the evidence of an attack in
some of these features. DoS/DDoS attacks are characterized by many small packets sent
from one or more source IPs towards a single destination IP. These attacks generally
use particular packets such as TCP SYN or ICMP echo-reply, echo-request, or host-
unreachable packets. Port and network scans involve small packets from one source IP
to several ports in one or more destination IPs, and are usually performed with SYN
packets. Spreading worms differ from network scans in that they are directed towards
a small specific group of ports for which there is a known vulnerability to exploit (e.g.
Blaster on TCP port 135, Slammer on UDP port 1434, Sasser on TCP port 455), and

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 15

Type of Attack Class Agg-Key Impact on Traffic Features

DoS (ICMP/SYN) 1-to-1 IPdst
nSrcs = nDsts = 1, nPkts/sec > λ1, avgPktsSize < λ2,
nICMP/nPkts > λ3, nSYN/nPkts > λ4.

DDoS (ICMP/SYN) N-to-1 IPdst
nDsts = 1, nSrcs > α1, nPkts/sec > α2, avgPktsSize < α3,
nICMP/nPkts > α4, nSYN/nPkts > α5.

Port scan 1-to-1 IPsrc
nSrcs = nDsts = 1, nDstPorts > β1, avgPktsSize < β2,
nSYN/nPkts > β3.

Network scan 1-to-N IPsrc
nSrcs = 1, nDsts > δ1, nDstPorts > δ2, avgPktsSize < δ3,
nSYN/nPkts > δ4.

Spreading worms 1-to-N IPsrc
nSrcs = 1, nDsts > η1, nDstPorts < η2, avgPktsSize < η3,
nSYN/nPkts > η4.

Table 3.1: Features used by NEWNADA in the detection of DoS, DDoS, network/port
scans, and spreading worms. For each type of attack, we describe its impact on the
selected traffic features.

they generally use slightly bigger packets. Some of these attacks can use other types of
traffic, such as FIN, PUSH, URG TCP packets or small UDP datagrams.

In the third and final step, the top-ranked outlying macro flows are flagged as anoma-
lies, using a simple thresholding approach. The automatic anomaly Characterization
module additionally uses the evidence of traffic structure provided by the Clustering
module to produce filtering rules that characterize the detected anomalies, which are ul-
timately combined into a new anomaly signature. This signature provides a simple and
easy-to-interpret description of the problem, easing network operator tasks. Sec. 3.2.3
presents additional details on this module.

3.2.1 Multi-Resolution Change-Detection (MRCD) Module

NEWNADA performs abrupt-change detection on standard IP flows, aggregated at 9
different macro-flow resolutions li. These include, from coarser to finer-grained resolu-
tion: traffic per Time Slot (l1:tpTS), source Network Prefixes (l2,3,4: IPsrc/8, IPsrc/16,
IPsrc/24), destination Network Prefixes (l5,6,7: IPdst/8, IPdst/16, IPdst/24), source
IPs (l8: IPsrc), and destination IPs (l9: IPdst). The 7 coarsest-grained resolutions are
used for change-detection, while the remaining 2 are additionally used by the second
module in the clustering step.

To detect an anomalous time slot, time-series Z li
t are constructed for 4 simple traffic

metrics that include number of bytes, number of packets, number of macro-flows, and
number of SYN packets per time slot, using resolutions i = 1, . . . , 7. Any generic
change-detection algorithm F(.) based on time-series analysis is then used on Z li

t . In
particular, we have decided to use a simple yet efficient change-detection algorithm
based on absolute deltoids [CM05].

This algorithm works as follows: every ∆T seconds, the aforementioned traffic met-
rics Zt = {zt(1), zt(2), zt(3), zt(4)} = {#bytest,#pktst,#flowst,#SYNt} are com-
puted. Using Zt, the absolute deltoids Dt = {dt(1), dt(2), dt(3), dt(4)} = Zt − Zt−1

are computed for current time slot t. The change-detection algorithm F(Dli
t0) flags an

anomalous traffic behavior at time slot t0 if any of the deltoids dt0(j) exceeds a detection
threshold λ(j), j = 1, . . . , 4 in any of the 7 aggregation levels (the analysis is done from

coarser to finer resolution, i.e., from l1 to l7 resolution). Each detection threshold λ(j)
is computed from the standard deviation of the corresponding deltoid dt(j), obtained
from a set of M past measurements:

λ(j) = ρ

[
1

M − 1

M∑
i=1

(
di(j)− d̄(j)

)2] 1
2

= ρ σd(j) (3.1)

where ρ is a scaling factor that permits to adjust the sensitivity of detection. In
order to cope with normal traffic variations, each detection threshold λ(j) is periodically
updated: if no anomalous behavior was flagged during the past M temporal slots, the
variance of each deltoid is recomputed from the last M deltoids.

The choice of these 4 simple traffic metrics for change-detection is based on [LCD04],
but the algorithm can be used with any other traffic metric sensitive to anomalies.
Tracking anomalies at multiple aggregation levels provides additional reliability to the
change-detection algorithm, and permits to detect both single source-destination and
distributed anomalies of very different intensities. Fig. 3.2 shows how a low intensity
DDoS attack might be dwarfed by highly-aggregated traffic flows. The time-series asso-
ciated with the number of packets, namely Zt = #pktst, does not present a perceptible
deltoid Dt at tpTS aggregation (left); however, the attack can be easily detected using
a finer-grained resolution, e.g., at the victim’s network (IPdst/24 aggregation, on the
right).

The final step performed by the MRCD module consists in computing the n × m
matrix X, which describes the set of n macro-flows present in the flagged anomalous
time slot using the m predefined traffic features.

The functionalities of the MRCD module are accomplished by three different sub-
modules, depicted in Fig. 3.3. The Network Traffic Capture sub-module uses the libp-
cap [Lib] library to capture raw traffic at the network interface of analysis in time slots
of ∆T seconds. In addition, the sub-module computes the different macro-flow aggre-
gations l1 to l7 for the 4 different metrics {#bytes,#pkts,#flows,#SYN}.

Fig. 3.4 depicts the API that implements these functionalities. At each time slot,
function <capture_raw_traffic> builds a traffic structure Pt that contains all
the packets on the corresponding slot of duration ∆T. This structure is used by the
<aggregate_traffic> function to compute time-series sample Zt, which will be
then used by the Abrupt Change Detection sub-module. Sample Zt is additionally
stored in a buffer of M + 1 samples that holds the last M + 1 anomaly-free samples
Zt−1, Zt−2, . . . , Zt−M ; these are used by the change-detection algorithm to compute the
last M anomaly-free absolute deltoids Dt, Dt−2, . . . , Dt−M+1 to update its detection
thresholds.

The Abrupt Change Detection sub-module’s API (depicted in Fig. 3.5) permits to
flag an anomalous time slot through the function <change_detection>, updating
the result of the change-detection analysis in the boolean variable flag every ∆T sec-
onds. The function <update_detection_thresholds> permits to update the

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 17

Time Slot Time Slot

Time Slot Time Slot

8

6

4

2

0

6

4

2

0

0 50 100 150

0 50 100 150

0

4000

3000

2000

1000

0

6000

4000

2000

x 10
4

x 10
4

A A

B B

0 50 100 150

0 50 100 150

Figure 3.2: Low-intensity anomalies might be hidden inside highly aggregated traffic,
but are visible at finer-grained aggregations. The DDoS attack is evident at the victim’s
network.

Network

Traffic Capture

Abrupt

Change Detection

Features

Computation

F

P

Fraw traffic

dT

EA B D....

C

X

Figure 3.3: Multi-Resolution Change-Detection (MRCD) module functionalities and
interactions.

detection thresholds λ(j), j = 1, . . . , 4 when no anomalies have been flagged during
the last M time slots, according to equation (3.1).

The Features Computation sub-module verifies the existance of an anomalous time
slot every ∆T seconds through the anomaly flag variable. In case of anomaly detec-
tion, the <compute_features> function in Fig. 3.6 computes the matrix of traffic
features X describing the set of macro-flows in the anomalous time slot, using as input
the traffic structure Pt computed by the Traffic Capture sub-module in the last time slot.

/**
* Capture network traffic

* @param duration of periodical capture

* @param network interface where to capture traffic

* @return set of raw traffic packets

*/

struct* P = capture_raw_traffic(double \Delta_T, char* iface)

/**
* Traffic aggregation and time-series computation

* @param set of raw traffic packets

* @param macro-flow resolution

* @return multi-variable time-series sample

*/

struct* Z = aggregate_traffic(struct& P, char* resolution)

Figure 3.4: MRCD traffic capture sub-module API.

/**
* Abrupt change-detection

* @param multi-variable time-series, current sample

* @param multi-variable time-series, previous sample

* @return indication of anomaly

*/

boolean flag = change_detection(struct& Z_t, struct& Z_{t-1})

/**
* Update of change-detection thresholds

* @param multi-variable time-series, last M anomaly-free samples

* @return updated detection thresholds

*/

double* \lambda = update_detection_thresholds(struct& Z_{t-1},
struct& Z_{t-2},..., struct& Z_{t-M})

Figure 3.5: MRCD abrupt change detection sub-module API.

The macro-flow resolution used in the computation of features depends on two criteria,
either using the coarsest resolution in which the anomaly was detected, or any other pre-
defined resolution, depending on which kinds of attacks or anomalies are being tracked
(highly distributed, N-to-1 or 1-to-N, etc.).

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 19

/**
* Features computation

* @param set of raw traffic packets

* @param macro-flow resolution

* @return traffic features space

*/

double** X = compute_features(struct& P_t, char* resolution)

Figure 3.6: MRCD features computation sub-module API.

3.2.2 Unsupervised Analysis Module

The Unsupervised Analysis module is based on applying clustering techniques on
X. The objective of clustering is to partition a set of unlabeled patterns into homo-
geneous groups of similar characteristics, based on some measure of similarity. Our
particular goal is to identify and to isolate the different macro flows that compose the
anomaly flagged in the first module, both in a robust way. Unfortunately, even if hun-
dreds of clustering algorithms exist [Jai10, DHS01], it is very difficult to find a single
one that can handle all types of cluster shapes and sizes, or even decide which algorithm
would be the best for our particular problem [FR98]. Different clustering algorithms
produce different partitions of data, and even the same clustering algorithm provides
different results when using different initializations and/or different algorithm parame-
ters. This is in fact one of the major drawbacks in current cluster analysis techniques:
the lack of robustness.

To avoid such a limitation, we have developed in [MCO11] a divide and conquer
clustering approach, using the notions of Sub-Space Clustering (SSC) [PHL04] and
multiple clusterings combination. The clustering algorithm combines the information
provided by multiple partitions of X to improve clustering robustness and detection re-
sults. We use Sub-Space Clustering to produce multiple data partitions, applying the
same density-based clustering algorithm to N different sub-spaces Xi ⊂ X of the origi-
nal space. Each of theN sub-spaces Xi ⊂ X is obtained by selecting k features from the
complete set of m attributes. To deeply explore the complete feature space, the num-
ber of sub-spaces N that are analyzed corresponds to the number of k-combinations-
obtained-from-m.

NEWNADA uses low-dimensional sub-spaces; using small values for k provides
several advantages: firstly, doing clustering in low-dimensional spaces is more efficient
and faster than clustering in bigger dimensions. Secondly, density-based clustering al-
gorithms provide better results in low-dimensional spaces [AGGR98], because high-
dimensional spaces are usually sparse, making it difficult to distinguish between high
and low density regions. Finally, results provided by low-dimensional clustering are
more easy to visualize, which improves the interpretation of results by the network op-
erator. We use therefore use k = 2, i.e., bi-dimensional sub-spaces, which gives a total
of N = m(m− 1)/2 partitions to combine.

X1

a

c

X2
a

b

X3

b

c

X

a

b

c

Figure 3.7: Sub-Space Clustering: 2-dimensional sub-spaces X1, X2, and X3 are obtain
from a 3-dimensional feature space X by simple projection. Units in the graph are
irrelevant.

Figure 3.7 explains this approach; in the example, a 3-dimensional feature space X
is projected intoN = 3 2-dimensional sub-spaces X1, X2, and X3, which are then inde-
pendently partioned via density-based clustering. Each partition is obtained by applying
DBSCAN [EKSX96] to sub-space Xi. DBSCAN is a powerful clustering algorithm that
discovers clusters of arbitrary shapes and sizes [Jai10], relying on a density-based no-
tion of clusters: clusters are high-density regions of the space, separated by low-density
areas. This algorithm perfectly fits NEWNADA’s unsupervised traffic analysis, because
it is not necessary to specify a-priori difficult to set parameters such as the number of
clusters to identify. The clustering result provided by DBSCAN is twofold: a set of p
clusters {C1, C2, .., Cp} and a set of q outliers {o1, o2, .., oq}.

To combine the information obtained from the N partitions, NEWNADA uses the
notions of multiple-clusterings Evidence Accumulation (EA) [FJ05]. EA uses the clus-
tering results of multiple partitions to produce a new inter-patterns similarity measure
which better reflects natural groupings. The algorithm follows a split-combine-merge
approach to discover the underlying structure of data. In the split step, the N partitions
are generated, which in our case they correspond to the SSC results. In the combine
step, a new measure of similarity between patterns is produced, using a weighting mech-
anism to combine the multiple clustering results. The underlying assumption in EA is
that patterns belonging to a natural cluster are likely to be co-located in the same cluster
in different partitions. Taking the membership of pairs of patterns to the same cluster as
weights for their association, the N partitions are mapped into a n×n similarity matrix
S, such that S(i, j) = nij/N . The value nij corresponds to the number of times that
pair of macro-flows {xi,xj} was assigned to the same cluster in the N partitions. Note
that if a pair of macro-flows {xi,xj} is assigned to the same cluster in each of the N
partitions then S(i, j) = 1, which corresponds to maximum similarity.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 21

Algorithm 1 EA4C & EA4O for Unsupervised Anomaly Detection
1: Initialization:
2: Set similarity matrix S to a null n× n matrix.
3: Set dissimilarity vector D to a null n× 1 vector.
4: for l = 1 : N do
5: Ql = DBSCAN (Xl, δl, nmin)

6: Update S(i, j), ∀ pair {xi,xj} ∈ Ck and ∀Ck ∈ Ql:

7: wk ← e
−γ (nl(k)− nmin)

n

8: S(i, j)← S(i, j) + wk
N

9: Update D(i), ∀ outlier oi ∈ Ql:
10: wl← n

(n− nmaxl) + ε

11: D(i)← D(i) + dM(oi, Cmaxl)wl
12: end for
13: Rank macro-flows: Drank = sort(D)
14: Set anomaly detection threshold: Th = find-slope-break(Drank)
15: Find anomalous macro-flows: if Drank(i) > Th→ anomalous macro-flow i.
16: Find anomalous macro-flows: find-max(S(i, j))→ anomalous macro-flows i, j.

This EA algorithm is adapted for the particular tasks of anomaly detection and char-
acterization of NEWNADA. By simple definition of what it is, an anomaly may consist
of either outliers or small-size clusters, depending on the resolution of the macro-flows.
Let us take a flooding attack as an example; in the case of a 1-to-1 DoS, all the packets
of the attack will be aggregated into a single IP flow, which will be represented as an
outlier in X. If we now consider a DDoS launched from β attackers towards a single
victim, then the anomaly will be represented as a cluster of β flows if the aggregation is
done at IPsrc/32 macro-flows, or as an outlier if the aggregation is done at IPdst/32.
Taking into account that the number of monitored flows can rapidly scale to thousands
even for short time slots, the number of attackers β would have to be too large to violate
the assumption of small-size cluster. Besides, if the attack is that massive (β ≈ n), then
it can be immediately detected by no mather which means.

The Unsupervised Analysis module is composed of two different EA methods to
isolate small-size clusters and outliers: EA for small-clusters identification, EA4C, and
EA for outliers identification, EA4O. Algorithm 1 presents the pseudo-code for both
methods. EA4C assigns a stronger similarity weight when patterns are assigned to
small-size clusters. The weighting function wk(nl(k)) used to update S(i, j) at each
iteration l takes bigger values for small values of nl(k), and goes to zero for big values
of nl(k), being nl(k) the number of flows inside the co-assigned cluster for macro-flows
pair {xi,xj}. The parameter nmin specifies the minimum number of flows that can be
classified as a cluster by the DBSCAN algorithm, while δl indicates the neighborhood
distance between flows to identify dense regions. The parameter γ permits to set the
slope of wk(nl(k)). Even tunable, the algorithm works with fixed values for nmin, δl,
and γ, the three empirically obtained.

X

Sub-Space

Projection

A

B

C

D

anomalous

macro-flows

DBSCAN

DBSCAN

DBSCAN

DBSCAN

....E F G

EA4C

EA4O

Figure 3.8: Unsupervised Analysis (UA) module functionalities and interactions.

EA4O works with a dissimilarity vectorD where the distances from all the different
outliers to the centroid of the biggest cluster identified in each partition (referred to as
Cmaxl) are accumulated. The algorithm clearly highlights those outliers that are far from
the normal-operation traffic in the different partitions, statistically represented by Cmaxl .
The weighting factor wl takes bigger values when the size nmaxl of Cmaxl is closer to
the total number of patterns n, meaning that outliers are more rare and become more
important as a consequence. The parameter ε is simply introduced to avoid numerical
errors (ε = 1e−3). Finally, instead of using a simple Euclidean distance, EA4O com-
putes the Mahalanobis distance dM(oi, Cmaxl) between the outlier and the centroid of
Cmaxl , which is an independent-of-features-scaling measure of similarity.

In the final merge step, any clustering algorithm can be applied to matrix S to obtain
a final partition of X that isolates small-size clusters. As we are only interested in find-
ing the smallest-size clusters, the detection consists in finding all the macro-flows with
the same, biggest similarity value in S. Regarding outliers detection, macro-flows are
ranked according to the dissimilarity obtained in D, and an anomaly detection thresh-
old Th is set. The computation of Th is simply achieved by finding the value for which
the slope of the sorted dissimilarity values in Drank presents a major change. Anomaly
detection is finally done as a binary thresholding operation on D: if Drank(i) > Th, the
system flags an anomaly in macro-flow i.

The functionalities of the Unsupervised Analysis (UA) module are accomplished by
four different sub-modules, depicted in Fig. 3.8. The Sub-Space Projection sub-module
computes the N bi-dimensional sub-spaces Xi for the multiple clustering analysis. The
function <compute_sub_space> depicted in Fig. 3.9 computes the projection of X
into the bi-dimensional sub-space defined by the <dims> features.

The DBSCAN sub-module performs the clustering analysis on each single sub-
space Xi through the <dbscan> function, see Fig. 3.10. DBSCAN parameters nmin

and δi are automatically computed by the <dbscan> function itself: nmin is set at the
initialization of the algorithm, simply as a fraction α of the total number of flows n
to analyze (α = 5% of n); δi is set as a fraction of the average distance between the
macro-flows in sub-space Xi (1/10), which is estimated from 10% of the macro-flows,
randomly selected. This permits to fast-up computations. Each partition Qi computed
for each of the N sub-spaces Xi is stored in a buffer, which is then fed to the EA4C and

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 23

/**
* Sub-Space computation

* @param traffic space to project in sub-spaces

* @param dimensions of the sub-space

* @return traffic sub-space

*/

double** X_i = compute_sub_space(double& X, int* dims)

Figure 3.9: UA sub-spaces computation sub-module API.

EA4O algorithms. This buffer is additionally used by the Characterization module (see
Sec. 3.2.3) to compute the traffic signatures for the identified anomalous macro-flows.

/**
* Cluster analysis through DBSCAN

* @param traffic space to partition

* @param minimum number of macro-flows in a cluster

* @param neighborhood distance to identify dense regions

* @return set of clusters and outliers

*/

struct* Q_i = dbscan(double& X_i, double n_min, double \delta_i)

Figure 3.10: UA DBSCAN clustering sub-module API.

The last step of the Unsupervised Analysis module is performed by the EA4C and
the EA4O sub-modules. Fig. 3.11 depicts the functions <find_anomalies_EA4C>
and <find_anomalies_EA4O> that compose the API of these sub-modules, which
implement the algorithms presented in Alg. 1. Vectors <int* I> and <int* O>
contain the indices of the macro-flows which are identified as anomalous.

3.2.3 Characterization Module

The Characterization module permits to automatically produce a set of K filtering
rules fk(X), k = 1, .., K to correctly isolate and characterize the macro-flows detected
as anomalous. On the one hand, such filtering rules provide useful insights on the na-
ture of the anomaly, easing the analysis task of the network operator. On the other
hand, different rules can be combined to construct a signature of the anomaly, which
can be directly exported towards standard signature-based security and anomaly detec-
tion/prevention devices such as IDSs, IPSs, and/or Firewalls.

In order to produce filtering rules fk(X), the algorithm selects those sub-spaces
Xi where the separation between the anomalous macro-flows and the rest of the traf-
fic is the biggest. The characterization defines two different classes of filtering rule:

/**
* Evidence Accumulation to identify small-size clusters

* @param N sets of clusters and outliers

* @return indices of most-similar anomalous macro-flows

*/

int* I = find_anomalies_EA4C(struct& Q_1,.., struct& Q_N)

/**
* Evidence Accumulation to identify outliers

* @param N sets of clusters and outliers

* @return indices of outlying anomalous macro-flows

*/

int* O = find_anomalies_EA4O(struct& Q_1,.., struct& Q_N)

Figure 3.11: UA Evidence Accumulation EA4C and EA4O sub-modules API.

/**
* Computation of filtering rules

* @param indices of most-similar anomalous macro-flows

* @param indices of outlying anomalous macro-flows

* @param N sets of clusters and outliers

* @return absolute rules and sorted relative rules

*/

struct* FR = get_filtering_rules(int& I, int& O, struct& Q_1,.., Q_N)

/**
* Generation of signatures

* @param absolute filtering rules and sorted relative rules

* @param max number of relative rules to combine

* @return anomaly signatures

*/

struct* Sig = combine_filtering_rules(struct& FR, int K)

Figure 3.12: UA Anomaly Characterization sub-module API.

absolute rules fA(X) and relative rules fR(X). Absolute rules are only used in the
characterization of small-size clusters. These rules do not depend on the separation be-
tween macro-flows, and correspond to the presence of dominant features in the macro-
flows of the anomalous cluster. An absolute rule for a certain feature j has the form
fA(X) = {xi ∈ X : xi(j) == λ}. For example, in the case of an ICMP flooding
attack, the vast majority of the associated flows use only ICMP packets, hence the ab-
solute filtering rule {nICMP/nPkts == 1} makes sense.

On the contrary, relative filtering rules depend on the relative separation between

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 25

T

C

I

Multi-Resolution

Change-Detection

MP

UAD

MLP

Figure 3.13: NEWNADA XORP processes within the EUA.

anomalous and normal-operation macro-flows. Basically, if the anomalous flows are
well separated from the rest of the clusters in a certain partition Qi, then the features of
the corresponding sub-space Xi are good candidates to define a relative filtering rule. A
relative rule defined for feature j has the form fR(X) = {xi ∈ X : xi(j) < λ or xi(j) >
λ}. The characterization also defines a covering relation between filtering rules: rule f1
covers rule f2↔ f2(Y) ⊂ f1(Y). If two or more rules overlap (i.e., they are associated
to the same feature), the algorithm keeps the one that covers the rest.

In order to construct a compact signature for the anomaly, the module selects the
most discriminant filtering rules. Absolute rules are important, because they define
inherent characteristics of the anomaly. As regards relatives rules, their relevance is
directly tied to the degree of separation between flows. In the case of outliers, the K
features for which the Mahalanobis distance to the normal-operation traffic is among
the top-K biggest distances are selected. In the case of small-size clusters, the degree
of separation to the rest of the clusters is ranked by using the well-known Fisher Score
(FS), and the top-K ranked rules are selected. The FS measures the separation between
clusters, relative to the total variance within each cluster. Given two clusters C1 and C2,
the Fisher Score for feature i can be computed as:

F (i) =
(x̄1(i)− x̄2(i))2
σ1(i)2 + σ2(i)2

(3.2)

where x̄j(i) and σj(i)
2 are the mean and variance of feature i in cluster Cj . In

order to select the top-K relative rules, the K features i with biggest F (i) value are
kept. To finally construct the signature, the absolute rules and the top-K relative rules
are combined into a single inclusive predicate, using the covering relation in case of
overlapping rules.

Absolute and relative filtering rules and anomalous macro-flow signatures are com-
puted by the <get_filtering_rules> and <combine_filtering_rules>
functions respectively, see Fig. 3.12. The computation of filtering rules takes as input
the anomalous macro-flows flagged by the EA4C and EA4O sub-modules, as well as
the set of N partitions Qi generated by the DBSCAN clustering sub-module. The re-
sulting filtering rules are finally combined to obatin the signatures that characterize the
flagged anomalies.

Figure 3.14: MRCD Monitoring Point XORP process.

3.3 Implementation

In this section we describe the implementation of NEWNADA in XORP within
the EUA framework, as described by the design presented in Sec. 3.2. NEWNADA
is composed of two different XORP processes: a Multi-Resolution Change-Detection
Monitoring Point process (MRCD-MP), and an Unsupervised Anomaly Detection and
characterization Machine Learning Process (UAD-MLP). Fig. 3.13 depicts NEWNADA
XORP processes within the EUA. The UAD-MLP dispatches methods to the MRCD-
MP through its local TCI, using the TCI’s <dispatch_push> method. This method
allows the MLP to receive continuous updates from the local MRCD-MP. In current
implementation of NEWNADA in XORP, both the MLP and the MP are intended to be
run in the same local router where the anomaly detection and characterization is to be
done. This restriction avoids the need to transmit the complete matrix of traffic features
built by the MRCD features computation sub-module in Fig. 3.6 between remote XORP
processes located in separated routers. Currently, the MRCP-MP locally serializes the
matrix of traffic features X to a predefined destination, from which the UAD-MLP reads
the features describing the macro-flows in the flagged time slot.

Figure 3.14 depicts the MRCD-MP process, which implements the functionalities
of the MRCD module as described in Sec. 3.2.1. The XRL interface of the MRCD-MP
in Fig. 3.15 provides two start/stop methods that control the traffic capture, the multi-
resolution change-detection, and the features computation tasks. The XRL <start_mrcd_mp>
permits to start capturing and analyzing traffic in time slots of fixed duration at the de-
sired network interface. At the end of each time slot, the result of the analysis of the
MRCD module is returned as a boolean flag indication of presence of anomalies in the
last time slot. This information is periodically reported to the local UAD-MLP in the
form of a boolean anomaly presence indication. When the MRCD module detects an
anomaly, the anomaly flag indication goes to 1 (<true>) and the computed matrix of
traffic features X for the corresponding anomalous time slot is locally saved. Network
monitoring can be stopped by calling the XRL <stop_mrcd_mp> on the MRCD-MP.

Figure 3.16 depicts the “core” of NEWNADA, i.e., the UAD-MLP process, which
implements the functionalities of the Unsupervised Analysis and Characterization mod-
ules described in Secs. 3.2.2 and 3.2.3. The XRL interface of the UAD-MLP in Fig. 3.17
provides a single method that controls the SSC and EA analysis of the macro-flows de-

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 27

interface newnada_mrcd_mp/0.1 {
/**
* Start the multi-resolution change-detection module

* @param duration of the time slot for traffic analysis

* @param network interface of analysis

* @param boolean indication of detected anomaly

*/
start_mrcd_mp?duration:u32&iface:txt->flag:bool;

/**
* Stop the multi-resolution change-detection module

* @param network interface of analysis

*/
stop_mrcd_mp?iface:txt;

}

Figure 3.15: MRCD Monitoring Point process XRL interface.

Figure 3.16: UAD Machine Learning XORP process.

scribed by the features’ space X, as well as the construction and selection of filtering
rules. The XRL <unsupervised_analysis> is provided as a callback to the dis-
patched XRL <start_mrcd_mp> on the MRCD-MP, and it is used by the MP to
periodically report the result of the Multi-Resolution Change-Detection analysis at the
end of each time slot. The <unsupervised_analysis> method takes as input the
anomaly boolean flag from the MP, and reads the matrix of traffic descriptors X in case
of anomaly indication. A list containing the identified anomalous macro-flows’ IPs,
as well as a list of signatures describing them are finally returned, completing NEW-
NADA’s anomaly detection and characterization tasks.

interface newnada_uad_mlp/0.1 {
/**
* Performs the unsupervised anomaly detection and characterization tasks

* @param boolean indication of detected anomaly

* @param list of anomalous macro-flows detected

* @param list of signatures built for the detected anomalous macro-flows

*/
unsupervised_analysis?flag:bool->anomalous_flows:list<ipv4net>&signatures:list<txt>;

}

Figure 3.17: UAD Machine Learning Process XRL interface.

3.4 Conclusion

We have presented Unsupervised Network Anomaly Detection Algorithm (NEWNADA).
NewNADA is an unsupervised machine-learning based system conceived to meet the
objective of automatic detection and characterization of intrusions and attacks/anomalies.
NEWNADA design relies on three modules. A first module to capture traffic and
anomalous changes. The second module determines the traffic flows responsible of
anomaly, without relying on signatures or calibration. Finally. Third, a module that
produces filtering irules for the classified flows.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 29

Chapter 4

Path availability and IDIPS

4.1 Introduction

ISP-Driven Informed Path Selection (IDIPS) is our service to meet path availability
and performance objectives. IDIPS design is described in Sec. 4.2. We further discuss
how our implementation is included in the EUA (Sec. 4.3). Next, we explain in details
how to build simple cost functions and combine them to reflect more complex rank-
ing strategies (Sec. 4.3.1). Finally, we provide example of module implementations in
Sec. 4.3.2 and conclude in Sec. 4.4. An evaluation of the proposed design can be found
in deliverable D4.3.

IDIPS is a data collection and interpretation service that can be used by the other
components of the EUA to control the traffic and achieve cooperation. The cost func-
tions (Sec. 4.3.1) influence the way the traffic is controlled. Indeed, the ranks provided
by IDIPS are directly used by the components of the EUA in charge of controlling the
traffic.

4.2 System design

As illustrated by Fig. 4.1 IDIPS is composed of three independent modules: the
Querying module, the Prediction module, and the Measurement module. The Querying
module is directly in relation with the client as it is in charge of receiving the requests,
computing the path ranking based on traffic qualification provided by the client, and the
ISP traffic engineering requirements, and replying with the ranked paths. For the sake
of generality, the remainder of this section will use the term ranking criterion when re-
ferring to traffic qualification. The Measurement module is in charge of measuring path
performance metrics if required. Finally, the Prediction module is used to predicting
paths performance (i.e., future performance metrics of a given path based on the past
measurements).

The Measurement module is the data collection component of IDIPS and the Pre-

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 31

Internet

Front-
end

Transaction

Cost
function

Querying Module Prediction Module

Measurement Module

IDIPS

Client

Client

Client

delay

bandwidth

packet loss

ping UDP

ABW

loss rate

Predicted
values

XORP

Figure 4.1: IDIPS within the EUA

diction module is the component that is in charge of interpreting the collected data. As
described later, the Prediction module is used to control the way the measurements are
performed. In other words, the Prediction module and the Measurement module form a
feedback loop allowing for optimal measurements.

The ranking criterion provided by clients in their requests might require measuring
the network to obtain path performance metrics, such as delay or bandwidth estimation.
One of the key advantages of IDIPS is that it avoids clients measuring themselves the
network, leading to redundant traffic injected in the network. The Measurement module
performs the measurements or asks a third-party to perform the measurements. Those
measurements can be active (i.e., probes are sent in the network) or passive (i.e., no
additional traffic is injected).

It is possible to predict the performance of a given path if it has been previously
measured [YRCR04, DCKM04, PLMS06, Pap07, dLUB05, WSS05, LPS06, LGS07,
LHC03, LGP+05, NZ04, FJP+99, NZ02, PCW+03, ST03, LHC05, CCRK04, RMK+08,
MS04]. This prediction task is achieved by the Prediction module. Note that a given
measurement can be used in several different predictions. For instance, the previous
delay measurements can serve for predicting the delay, the jitter, or for determining
whether the path is reachable or not.

To enable flexibility, ease of implementation and performance1, IDIPS clearly sepa-
rates the Querying, Measurement, and Prediction modules. Each instance module com-
municates with the other modules thanks to a standardized interface. Therefore, the
handling of requests from the clients is strictly separated from the prediction of path
performance and path performance prediction is separated from path measurements.

The Querying module receives the ranking requests from the clients and computes
the rank for these requested paths based on their predicted future performance. Future
paths performance are estimated by the Prediction module that relies on the measure-
ments performed by the Measurement modules.

All along this section, we are using the terms measurements and predictions. How-
ever, they have to be understood in their very generic meaning. For IDIPS, a mea-
surement corresponds to any information grabbed from the network. This definition
encompasses active measurements like pings, passive measurements like Netflow infor-
mation [Cla04], or even routing information like BGP feeds. Likewise, a prediction in
IDIPS is an information that is likely to be valid in the upcoming future. Therefore, a
prediction can be the result of very complex machine learning techniques but also very
simple information like the originating AS of the path destination. In other word, a
measurement is an information discovered in the past or just at present and a prediction
is an information that is likely to be valid in the coming future.

To support as many requests per second as possible, the IDIPS modules are running
independently of each others. This independence is ensured through the use of caches.
Each module stores its processing results in its local cache. If another module requests
a given result, a simple get in the appropriate cache will return it.

There may exist several instances of the Prediction and Measurement modules. For
example, IDIPS can have a delay Measurement module, a bandwidth Measurement mod-
ule, a delay prediction module, and a bandwidth prediction module. Deliverable D4.3
provides and evaluates example of Measurement and Prediction modules implementa-
tions.

4.2.1 Querying module

Common applications are only able to use one path at a time, even if several exist.
In this case, the client only needs to know the very best path returned by IDIPS when
it has no additional information about the paths. For this reason, the list of ranked path

1IDIPS must potentially handle many ranking requests simultaneously

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 33

sync_rank_paths
? sources & destinations & criterion
-> ranked_paths_list & ttl

Figure 4.2: IDIPS server API for synchronous mode clients

is sorted by rank before being transmitted to the client. Then, the client can safely
consider the first path of the list as the very best path (or one best path among all the
best paths if several ones have the same lowest value). The other paths are returned only
for resiliency (the best path is not valid for the client) or if the client uses the ranked list
to refine a local decision. Sorting the paths simplifies the operation at the client.

Paths ranking is done with the use of Cost Function. For a given<source, destination>
pair, the cost function returns a cost, i.e., a positive integer resulting from metrics com-
bination of a given path. The lower the path cost, the more attractive the path. We
chose the cost to be represented by a positive integer for its simplicity (i.e., no com-
plex representation to be processed) and because operators are already used to translate
their policies into integers with the BGP local-pref [RLH06]. By definition, the sum
of several costs is also a cost. One can for example combine cost functions with an
exponentially weighted sum in order to reflect complex strategies or politics as long as
the result is rounded into a positive integer. Sec. 4.3.1 explains how to construct cost
functions.

To support as many requests per second as possible, the IDIPS modules are running
independently of each others. This means that the Querying module never has to wait
for a path performance prediction to be computed by the Prediction module to compute
the path ranking. When a prediction has to be retrieved by the Querying module, it calls
a get on the Prediction module for the path attribute it is interested in. The attributes
of a path are the predicted metric values as computed by the Prediction module for the
path. For the sake of generality, any attribute is encoded as an integer. If an information
is too complex to be represented with a single integer, it can always be represented
as a set of integers. For example, an < x, y > coordinates can be decomposed in
the x_coordinate and the y_coordinate and a function that needs to use the
coordinates just needs to retrieve the x_coordinate and the y_coordinate to
reconstruct the full coordinates. Sec. 4.2.3 gives more details about the interface to
retrieve path attributes from the Prediction module.

Depending on its needs, a client can query IDIPS in a synchronous or asynchronous
way. In the synchronous mode, when a request is received by the IDIPS server, the
server sends the list of ranked paths back to the client once computed. On the contrary,
in the asynchronous mode, when a request is received by the IDIPS server, the server
computes the paths ranking but does not send the list back to the client. The requester
must explicitly send a special command to retrieve the list of ranked paths. The API
that IDIPS presents to clients is depicted in Fig. 4.2 for the synchronous mode and in
Fig. 4.3 for the asynchronous mode.

async_rank_paths
? sources & destinations & criterion
-> tid

get_all_path_ranks
? tid
-> ranked_paths_list & ttl

get_next_path_rank
? tid
-> source & destination & rank & ttl & more

get_next_n_path_ranks
? tid & n
-> ranked_paths_list & ttl & more

terminate_transaction
? tid

Figure 4.3: IDIPS server API for asynchronous mode clients

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 35

The commands are sent by the client to the server. When the client uses the asyn-
chronous mode, it receives a transaction identifier (tid) back from the server. Every re-
quest received by a server is abstracted as a transaction. This tid is the identifier of that
transaction on the server. This identifier is used for retrieving the list of ranked path with
the get_all_path_ranks. If the ranking is not yet computed by the server when
the get_all_path_ranks is received, an empty list of ranked paths and the invalid
0x0 ttl are returned. The server, in asynchronous mode, always returns immediately a
result when it receives an async_rank_paths or a get_all_path_ranks. The
client must then poll the server until it has retrieved the list. This behavior is used to
avoid the server to maintain too much state about the clients, it only maintains ranking
state (linked with tid). To avoid the need of client polling, signaling could be used to
let the server inform the client that the transaction is ready but it thus means that the
server must maintain state about the client, which is what we want to avoid while using
the asynchronous mode. Polling is by definition avoided in the synchronous mode. It
is worth to notice that a ranking call can be implemented as being blocking or non-
blocking at the client side, independently of the client to server communication mode.
The typical use of a blocking call is when the path to exchange data cannot be changed
once the flow is started. Then, the best path must be used. The client must then wait for
the path ranking before being able to exchange data. On the contrary, non-blocking call
is used when the client can change the path it uses while exchanging data. For example,
a shim6 [NB09] host starts exchanging data with a path arbitrarily selected by following
the rules of RFC3484 [Dra03]. If the data transfer is long enough, shim6 could decide
to switch to the best path computed by IDIPS. In this case, the flow can start as soon as
possible, even if the path used to exchange data might be sub-optimal at the beginning.

To avoid this waste of resources, IDIPS also offers the possibility to retrieve one path
at a time with the get_next_path_rank that returns the best path that has not yet
been retrieved by the client. To use the best working path, the client can use the algo-
rithm presented in Fig. 4.4 where handle_path is the client function that needs the
path and that returns true when no more path is required. The more parameter returned
by the get_next_path_rank indicates if there is still a path to retrieve for the trans-
action. Optionally, the client can explicitly ask IDIPS to terminate the transaction. If not,
IDIPS should eventually terminate it automatically. Instead of considering retrieving the
rankings one by one or all at a time, the more generic get_next_n_path_ranks
is also proposed where the client specifies the number of paths that must be returned by
IDIPS. The equivalent of GET_ALL_PATH_RANKS corresponding to a specified number
higher or equal to the number of sources time the number of destinations while a value
equal to one corresponds to the get_next_path_rank. However, in most of the
cases, a client is interested by either one or all the paths.

Changing the paths to always use the ones with the best performance might result in
oscillations [AAS03, GDZ06]. Mechanisms to avoid oscillations [AAS03, GDZ06] can
be implemented in the Querying module. However, dealing with the oscillation problem
is out of the scope of our study that focuses on the architectural part of the performance
based traffic engineering problem.

more := true

WHILE more
DO

(src, dst, rank, more) := get_next_path_rank(tid)
IF handle_path(srcs, dst, rank)
THEN

STOP
END

DONE

terminate_transaction(tid)

Figure 4.4: One-by-one path ranking retrieval algorithm

start_measurement ? source & destination & interval

stop_measurement ? source & destination

set_interval ? source & destination & interval

get_measurements ? source & destination
-> measurements

Figure 4.5: Measurement module API

4.2.2 Measurement Module

The Measurement module is in charge of measuring the paths. The measurements
can be active or passive. For example, an active measurement could be a ping while
passive measurement could be the count of the number of TCP SYNs entering the net-
work.

The Measurement module API presented in Fig. 4.5 is two fold. The start_measurement,
stop_measurement, and set_interval commands determine the targets to mea-
sure while the get_measurements is used to retrieve the last measurements of a
path.

Measurements are always defined between a source and a destination and are per-
formed periodically (with a configurable interval between the measurements). In case
of passive measurements, the sources and destinations as well as the passively obtained
information are extracted periodically from the passively collected traces. The possibil-
ity to modify the interval of a measurement is not mandatory but is more convenient as
it allows one to adapt the measurement rate dynamically without disrupting a measure-
ment campaign. If such a command is not available, it means that the measured values
must be stored outside the Measurement module. Indeed, without the set_interval
command, the measurement has to be stopped, then re-started from scratch meaning that

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 37

start_prediction ? path

stop_prediction ? path

get_prediction ? path
-> prediction

Figure 4.6: Prediction module API

all the state in the Measurement module instance is lost for this measurement. Finally,
the get_measurements command returns all the measurements performed so far
for the <source, destination>.

It is important to notice that the decision of measuring a path is done either by con-
figuration or triggered by the Prediction module, not directly by the requests. However,
the content of the requests can be seen as passive measurements and can be used to
dynamically determine the paths to measure.

4.2.3 Prediction Module

The prediction module contains all the intelligence of IDIPS. Indeed, IDIPS is a ser-
vice that aims at determining the best paths to use. However, determining the best path
to use is a prediction exercise as the future behavior of a path is seldom known, particu-
larly when considering inter-domain paths. Determining how to predict a path behavior
is out of the scope of this section. This section presents, instead, how a Prediction
module has to be implemented in IDIPS.

As already said earlier, IDIPS modules are running independently. However, the
Querying module needs to know the path attributes computed by the Prediction module.
In addition, the Prediction module has to know the path it has to predict the performance
metric for. To this aim, the Prediction module provides the API presented in Fig. 4.6.

This API has two components. On the one hand, the start_prediction and
stop_prediction commands are used to specify the path to predict performance
metric for. On the other hand, the get_prediction command is used to retrieve the
predictions.

get_prediction always returns a value. If the attribute value is not defined, an
error or a meaningful default value is returned. For example, if the bandwidth of a path
is not known, a default value of zero can be returned making the path less interesting
than any other path.

The decision of measuring or predicting a path is highly related to the deploy-
ment policies, the topology, and the traffic. The decision of predicting a path is thus
not provided by IDIPS but is considered case by case by the Prediction module or by
configuration. There exist three ways of determining if a prediction has to be started

or stopped. First, an operator can manually determine the path to predict and uses
start_prediction and stop_prediction commands to do so. Second, a Pre-
diction module instance can determine by itself if a path is worth being measured or
not. For example, if a Prediction module received enough get_prediction for a
path it is not predicting yet, it can decide to start predicting it. In this second case, the
start_prediction and stop_prediction commands are not used. Finally, a
Prediction module instance can predict that a path has to be predicted and command an-
other Prediction module to start predicting the path. For example, a Prediction module
instance can be in charge of predicting if a path is important or not based on the traffic
it carries. If the path is considered as important, it can ask to start the delay prediction
for that particular important path.

To predict the future path behavior, a Prediction module often needs information
from the Measurement module. Like the Querying module can retrieve a prediction with
a simple get, the Prediction module can retrieve the measurements from the Measure-
ment module with the get_measurements (see Sec. 4.2.2). The Prediction module
can use the last measurements to predict the future behavior of a path. Based on the
prediction and on its quality, the Prediction module can decide to modify the frequency
at which a measurement has to be performed (with the sec_interval command)
or ultimately to start or stop a measurement. In addition, because a Prediction module
aims at providing the path performance for the near future, the get_prediction
only returns one result as opposed to get_measurements that returns a list of mea-
surements. Obviously, this API does not preclude an extended API that would return
more information about the quality of the prediction (for example a TTL) or several
predictions at once.

Path asymmetry is common in the Internet [PPZ+08] and some metrics like the
bandwidth strongly depends on the followed direction. It is then important that the
IDIPS Measurement and Prediction modules take this factor into account to accurately
rank the paths.

4.3 Implementation

Sec. 4.2 presents a potential generic design for IDIPS. In this section, we present
how we have implemented IDIPS within the XORP framework [HHK03].

As in the generic design presented in Sec. 4.2, our implementation is decomposed in
the Querying, Prediction, and Measurement modules. The querying module is a single
XORP process, while there are as many XORP processes as required to implement the
Measurement and Prediction modules. For example, if IDIPS requires to measure the
delay and the bandwidth, the Measurement module will contain two XORP processes.
One implementing a delay measurement and the other implementing the bandwidth
measurement. Fig. 4.1 shows the IDIPS design in the EUA, while Fig. 4.7 shows how
the different modules interact with each others.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 39

Client Querying Prediction Measurement
start measure(a, b, 5)

ping(a, b)

start measure(a, c, 10)
ping(a, c)

ping(a, b)

ping(a, b)

ping(a, c)

ping(a, b)

ping(a, c)

ping(a, c)

ping(a, b)

ping(a, b)

get measure(a, b)

get measure(a, c)
set att(Pa,b, delay, x)

set att(Pa,c, delay, y)

rank(src: a, dst: {b, c},
TQ: min delay)

rank!

Cost function XRL UDP

cf delay(Pa,b)

cf delay(Pa,c)

sort(Pa,b, Pa,c)

Figure 4.7: Example of modules interactions in IDIPS

The Querying module is decomposed in three main parts: (i) the Front-end part,
(ii) the Transaction part, and (iii) the Cost function part. The Front-end part receives
the requests from clients and returns the ranking results. The Transaction part processes
the requests received by the Front-end and computes the path rank for these requests.
Finally, the Cost function part implements the cost functions. Any EUA process can
request paths ranking just by sending an XRL to the Front-end of the Querying module.

IDIPS must potentially handle many ranking requests at the same time. To support
a potentially high load, requests are abstracted into transactions. Therefore, for each
request, a transaction instance is created by a unique identifier. Each transaction runs
independently of the others and maintains the list of sources, the list of destinations, and
the path ranking criterion. If the request uses the synchronous mode, the transaction also
maintains information to send the reply to the requester. When a request is received, the
Front-end instantiates an empty transaction and adds all the paths from the request. At
that stage, the paths are computed blindly: for each source s, for each destination d in
the source and destination lists, the < s, d > path is added to the transaction. Once all
the paths have been added to the transaction, the run method is called on the instance.

The job of the run method is to determine the cost and the rank of each path,
according to the path ranking criterion and to build the sorted list of ranked paths. A
transaction is ready once the ordered list of ranked paths has been built completely. The
cost of each path is determined by calling the appropriated cost function on the path.
Once the cost is determined for a path, the path, tagged with its cost is added to the
priority queue _costs. The _costs structure is maintained ordered by the path cost.
It means that at any time, the ith entry in _costs has a lower or equal cost than the
i+ 1th entry. The transaction is set ready once the cost and rank of each path is known.
If the request was in the synchronous mode, the transaction triggers the transmission of
the reply to the request once the transaction becomes ready. If the request was in the
asynchronous mode, the method stops. As long as the transaction is not ready, a call to
retrieve a path for an asynchronous mode request returns an error.

We implemented the call of cost functions in two different ways. By using XRL or
by directly calling the method on the querying module class instance. We use the XRLs
to parallelize the processing. However, as the processing of XRL is centralized (via the
finder) and because the management of XRLs is sequential and implemented with
a list, this implementation does not improve the performance. Even worse, it reduces
the number of requests IDIPS is able to sustain and may cause ranking failures because
XRLs can be lost. Indeed, the XRLs are enqueued in a list limited in size. Therefore,
once the list is full, XRLs can be lost. The performance can also drop because an
XRL at position i in the queue will not be dispatched to the Querying module before
the XRLs prior to position i have been dispatched to their target process. Even if the
processes are different. With an experiment where the requests ask to rank 50 different
paths, we observed a drop of 54% of requests per second supported by IDIPS compared
to an implementation calling the cost function directly without XRLs. We also noticed
about 12% of failing transactions and a time to compute the rank 56 times higher with
the XRL implementation. However, for the requests that succeeded, the time perceived
by the client was 13% faster with the XRL implementation. The time perceived by
the client is the time elapsed between the sending of the request and the reception of

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 41

the ordered list of ranked paths. Despite the better client perceived time with the XRL
implementation, we recommend not to use the XRL implementation. Indeed, without
the use of XRLs, IDIPS can handle more simultaneous requests and does not face loss
of requests due to the limited size of the XRL queue.

Sec. 4.2 proposes to keep the modules independent thanks to the use of getter func-
tions: when a module needs information from another module, it sends a get to the
module to retrieve the values. In our implementation, every module implements such
getters. However, we also implemented a path attributes cache within the Querying
module. This cache stores, for each path, all the known attributes for the paths. The
attribute values are computed by the Prediction module. This cache is based on a push
model. It means that it is not the Querying module that populates it but the Prediction
module that pushes the values to that cache. The querying module thus implements
the set_attribute and get_attribute XRLs. Therefore, when a prediction
is computed, the Prediction module immediately calls the set_attribute XRL on
the Querying module to set the attribute value for the path that as just been computed.
This mechanism is implemented to speed-up the cost computation for the paths. In-
deed, as presented in Sec. 4.3.1, the cost of a path is computed with a cost function
that potentially needs the attributes of the path. Thus, without an attribute cache at the
Querying module, an XRL must be called to the appropriate Prediction module instance
for each attribute to retrieve. However, calling XRL implies some delay that can be
non negligible if the Prediction module is not running on the same host as the Query-
ing module. For this reason, the Querying module does only rely on this cache. If
the cache has no entry for the path attribute, it is considered that the path is not under
measurement/prediction and the Cost function must determine an appropriate cost. It
is important to remark that our implementation does not allow the prediction module
to determine by itself that a path merits to be predicted. Indeed, the Querying module
never calls the get_attribute on the prediction module. So, the prediction module
cannot count the number of failing calls. However, one could imagine a Measurement
module instance monitoring the cache misses at the querying module. The prediction
module could then determine the paths that are worth being predicted.

The notion of module is translated into XRL interfaces in EUA. Except for the
Querying module, there might be several C++ classes implementing a module and pos-
sibly several instances of a class as illustrated in Fig. 4.1. Each class must implement
the XRL interface corresponding to the module it is related to. Fig. 4.8 gives the XRLs
that must be implemented by the class implementing the Querying module. It is impor-
tant to notice that the interface for the querying module is only composed of the setter
and the getter for the path attributes. It does not include an interface for clients to query
IDIPS. Indeed, XRL interfaces are only related to the implementation. Nevertheless, we
implemented the client-related commands described in Fig. 4.2 and Fig. 4.3 with XRLs
to make IDIPS usable directly by any process in the EUA. Fig. 4.9 lists the XRLs that
must be implemented by the classes implementing the Measurement module. Finally,
Fig. 4.10 shows the XRLs that the classes implementing the Prediction module must
implement. Each class implementing one and only one technique. For example, one
class can implement a UDP ping for the Measurement module and another can measure
the path bandwidth and one class can implement a delay bandwidth product predictor

interface idips_querying/0.1 {
/**
* Get a path attribute

* @param path to get the attribute from

* @param name of the attribute

* @param value of the path attribute

* @param rpath echo of path

*/
get_attribute?path:txt&name:txt->value:u32&rpath:txt;

/**
* Set a path attribute

* @param path to set the attribute to

* @param name of the attribute

* @param value of the path attribute

*/
set_attribute?path:txt&name:txt&value:u32;

}

Figure 4.8: Querying module XRL interface

based on the delay and bandwidth measurements.

The whole process is presented in Fig. 4.7. The Prediction module asks an instance
of the Measurement module (i.e., the delay measurement instance) to measure a path.
A path to measure is defined by a source and a destination. For the sake of generality,
the source and the endpoint of any path to measure is represented textually, meaning
that it can be a name, an IP address of a network interface, or any other suitable infor-
mation. Each path installed in a Measurement module is periodically measured with a
configurable interval between measurements (e.g., 5 for path (a,b) and 10 for (a,c) in
Fig. 4.7). The use of IP prefixes instead of IP addresses is particularly interesting to
aggregate information. For example, if a site has one IP prefix p/P for its clients and
that the performance are considered to be the same for any of them, then all the paths
can be aggregated by using the p/P source instead of the client IP address.

The start_measurement XRL function triggers the measurement of the path
defined by the source and destination parameters. The path is then measured
every interval seconds (e.g., 5 for the path (a,b) in Fig. 4.7).2

The various Measurements module instances keep locally the last measurements
they obtained for the paths they are measuring. When a Prediction module needs a
measurement, it sends a get_measurement XRL to the adequate instance of the
Measurement module and retrieves the measurements for the path. The measurement
is then sent to the Querying module, with the set_attribute function, for being
stored in the Predicted values storage.

2To avoid synchronization, the time between two measurements should be set to be equal to the
interval parameter on average.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 43

interface idips_measurement/0.1 {
/**
* Start periodically measuring a destination

* @param destination destination to measure

* @param interval interval in seconds between two measurements

*/
start_measurement?source:txt&destination:txt&interval:u32;

/**
* Stop measuring a destination

* @param destination destination to stop measuring

*/
stop_measurement?source:txt&destination:txt;

/**
* Change measurement interval for a destination

* @param destination destination to change the measurement interval

* @param interval new measurement interval for the destination

*/
set_interval?source:txt&destination:txt&interval:u32;

/**
* @params destination destination to get the past measurements

* @params measurements list of measurements

* @params clean remove elements after retrieving them

*/
get_measurements?source:txt&destination:txt

&clean:bool->measurements:list<u32>;
}

Figure 4.9: Measurement module XRL interface

interface idips_prediction/0.1 {
/**
* Start a prediction model for a path

* @param path to predict

* @param src source IP for the measurements

* @param dst destination IP for the measurements

*/
start_prediction?path:txt&src:ipv4&dst:ipv4;

/**
* Stop a prediction model for a path

* @param path to stop the prediction for

*/
stop_prediction?path:txt;

/**
* Get the prediction for a path

* @param path to get the prediction for

* @param prediction for the path

*/
get_prediction?path:txt->prediction:u32;

}

Figure 4.10: Prediction module XRL interface

4.3.1 High Level Cost Functions Implementation

In this section, we show how to construct simple fundamental cost functions and
how to combine them to implement an ISP policy. Our example is based on a situa-
tion in which an ISP has three customer families: (i) premium users always requiring
the best available performances, (ii) standard users requiring a good performance/cost
trade off, and (iii) light users always requiring the lowest cost. The traffic engineering
changes between the night and the day for standard users: during the day, a lower cost
is preferred while during the night, the performance is preferred. The monetary cost of
a path depends on the 95th percentile load of the link used to reach the Internet.

In our example, we assume that the prediction module feeds the querying module
with the following information:

• routing reachability of the paths. A path is reachable if there exists a route in the
FIB to forward traffic from its source to its destination, this information is stored
in the REACHABILITY attribute

• originating ASN. The originating Autonomous System Number (ASN) of a path
is the originating AS number of the prefix of the destination as discovered by
BGP. This information is stored in the ORIGIN attribute

• monetary cost of the paths. The monetary cost of a path is the expected cost it
would represent to carrying one additional Mega bit per second of traffic on it.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 45

Algorithm 2 Example of cost function for the reachability
Ensure: Integer value representing the result of this Cost Function. is_reachable_cfsrc,

dst
1: reachable← get_attribute(<src,dst>, REACHABILITY)
2: return reachable

Algorithm 3 Example of cost function for the path locality
Ensure: Integer value representing the result of this Cost Function. locality_cfsrc, dst

1: origin← get_attribute(<src,dst>, ORIGIN)
2: if origin = LOCAL_ASN then
3: return 0
4: end if
5: return 1

Algorithm 4 Example of cost function for the cost minimization
Ensure: Integer value representing the cost of using the path defined by src, dst. mini-

mize_cost_cfsrc, dst
1: cost← get_attribute(<src,dst>, COST)
2: return cost

This cost is computed by applying the 95th percentile technique [DHKS09] and
is stored in the COST attribute

• available bandwidth of the paths. The available bandwidth of each path is esti-
mated and is expressed in Mbps stored in the ABW attribute

• customer family. A customer can be premium, standard or light user. The cus-
tomer family, stored in the FAMILY attribute, of a path is determined simply by
considering the source of the path and ignoring its destination

We first have to define if a destination is reachable or not from a given source ad-
dress. A path, defined by a <source, destination> pair, has its REACHABILITY at-
tribute equal to 1 if it is reachable. Otherwise, the attribute is set to the maximum
integer value. The cost function is_reachable_cf, implemented in Algorithm 2,
thus makes reachable destinations more preferable than unreachable ones.

The locality of a path is determined by the originating AS number of the path des-
tination. If the destination prefix is originated by the operator, the path is considered
local. Algorithm 3 shows how to implement the locality_cf cost function that
prefers local paths over non-local ones. In this function, LOCAL_ASN is operator AS
number.

Algorithm 4 shows the minimize_cost_cf cost function that returns the mone-
tary cost of using a path. This function makes path with the lowest monetary cost more
attractive. To avoid oscillations, it is a good idea to use classes of monetary costs instead
of the exact monetary cost. For example, the COST attribute could be the reminder of
the division of the monetary cost by x instead of being the raw value of the monetary
cost.

Algorithm 5 Example of available bandwidth cost function
Ensure: Integer value representing the result of this Cost Function.

1: MAX_BW capacity of the network available_bw_cfsrc, dst
2: abw← get_attribute(<src,dst>, ABW)
3: return (MAX_BW – abw)

Algorithm 6 Example of customer family cost function
Ensure: Integer value representing the customer family for traffic from src to dst. cus-

tomer_family_cfsrc, dst
1: family← get_attribute(<src,dst>, FAMILY)
2: return family

Algorithm 7 Example of a complex cost function
Ensure: Encounters customers requirements

1: PREMIUM_USER = 1
2: STANDARD_USER = 10
3: LIGHT_USER = 20 customer_management_cfsrc, dst
4: if (is_reachable_cf (src, dst) = MAX_INTEGER) then
5: return (UNREACHABLE)
6: end if
7: customer← CUSTOMER_FAMILY_CF(src, dst)
8: if (customer = PREMIUM_USER) then
9: cost← AVAILABLE_BW_CF(src, dst)

10: end if
11: if ((customer = STANDARD_USER ∧ DAY) ∨ customer = LIGHT_USER) then
12: cost←MINIMIZE_COST_CF(src, dst)
13: end if
14: if (customer = STANDARD_USER ∧ NIGHT) then
15: cost← AVAILABLE_BW_CF(src, dst)
16: end if
17: return

(
LOCALITY_CF(src, dst) · cost

)
+ cost

When considering bandwidth, the best paths are those having the highest available
bandwidth. The implementation of a cost function preferring paths with the highest
bandwidth is not straightforward. Indeed, IDIPS, by definition, always prefers the lowest
cost while in terms of bandwidth, the highest is the best. Thus, to prefer the paths
with the highest bandwidth, the value of the available bandwidth is subtracted to the
highest theoretical available bandwidth for the operator (i.e., the total network capacity).
Algorithm 5 provides the implementation of such a cost function, MAX_BW being the
highest theoretical available bandwidth in the network.

As for cost minimization, the customer family cost function only has to return the
customer family. Algorithm 6 shows the implementation of this cost function. In the
system, the family 1 corresponds to premium users, 10 is for standard users and 20 for
light users.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 47

The previous algorithms can be combined by the network operator to build more
complex policies. Algorithm 7 combines all the blocks in order to reflect the operator
policies proposed earlier in this section. In particular, Algorithm 7 first checks whether
the destination dst is reachable from the source src. If the path is reachable, it applies
the policies previously defined, based on the FAMILY attribute. For premium clients
available bandwidth is always preferred. For standard clients the applied policy depends
on the time period; the available bandwidth is used as cost function during the night,
while cost minimization is preferred during the day.

The last line gives preference to a local paths. This line is an example of weighted
sum of cost functions. More particularly, the cost result by the CUSTOMER_MANAGEMENT_CF
is a weighted sum of the costs from other cost functions, weight by the cost returned by
a cost function. The principle in the example is to double the cost if the path is not local.

4.3.2 Examples of IDIPS module implementation

This section presents two examples of module implementation. We first present
a Measurement module that implements a UDP ping and then describe a Prediction
module that implements an average delay predictor. The Prediction module uses the
measurement module to predict the delay of the paths.

Measurement module example For the sake of the example, we propose a UDP ping
Measurement module. This module does not aim at being used in a real environment
where more robust measurements techniques should be used. To estimate the round-trip
delay between a <source, destination> IP pair, we send a UDP segment to the destina-
tion on a port number that is very unlikely to be open. If the port is not opened and if
no filtering applies, an ICMP port unreachable is expected to be returned to the Mea-
surement module. The sending of the UDP segments is done by using the XORP socket
API. XORP sockets are similar to the POSIX sockets except that they are asynchronous
and that they are implemented with XRLs. In the reminder of this section we will use
the term socket to refer to the XORP socket abstraction. A XORP process that wants
to use a socket has to implement the socket4_user3 XRL interface. This interface
defines several XRL like error_event or recv_event that respectively indicate
if an error occurred with the socket or if bytes are ready to be read on a socket. The
socket4_user is used to signal the XORP process about events on the sockets it is
in charge of. To open, bind, connect, listen, send data on or close a socket, the IDIPS

must use an XRL Socket Client. XRL Sockets Clients are classes that implement the
socket4 XRL interface and are directly provided in the XORP framework.

To implement the UDP ping, we create one connected UDP socket per <source,
destination> IP pair and periodically send a UDP segment with it. The time at which the
packet is sent is stored for later use. Because the destination does not listen on the port, it
sends an ICMP port unreachable that eventually triggers the call of the error_event
XRL in our process. The error indicates on which socket the error arrives and the nature

3socket6_user for IPv6

of the error. The delay is thus simply computed by doing now −measure where now
is the time at which the XRL is called and measure is the time at which the probe was
sent.

The module needs to keep some state about the <source,destination> IP pairs it
measures. To do so, different datastructure are required. First, the _destinations
map maintains measurement information for each <source, destination> IP pair. This
information contains the interval at which the pair must be measured and the list of
the measured delays for the pair (the closer to the end of the list, the more recent the
measurement). Once a delay has been measured for a pair, it is appended to its mea-
sured delay list. When the get_measurements command is called on the mea-
surement module, this is the measured delay list for the requested pair that is returned.
Two other datastructures are used to map a socket identifier to a pair and vice versa.
The _socket_info maps gives information about the socket indexed by the socket
identifier. The related information is the source and destination addresses and the time
at which the last segment has been sent on this socket (the measure variable). The
_sockets map is the opposite of the _socket_info. _sockets gives the socket
identifier for any pair. The _socket_info is unfortunately required as there exists
no way in XORP to retrieve meta information on a socket like those we need.

The IP pairs are measured periodically. To implement these periodic probings, we
use a XORP periodic timer. Every second, this timer calls the loop method of our pro-
cess. When this method is called, a UDP segment is sent to each <source, destination>
IP pair that should have been measured at the latest when the loop method is called.
To efficiently determine the pairs to measure at the loop call, the _to_measure pri-
ority queue is maintained for each source covered by the measurement module. The
key in the priority queue is the time at which the measurement has to be done and the
value is the destination address. When a measurement is sent by the loop, the entry is
removed from the priority queue and the next measurement time is computed for that
entry. The new measurement time is then added to the priority queue. Fig. 4.11 shows
the pseudo-code of the loop method.

Lines 17 – 21 ensure the measurement periodicity of <source, destination> pair
that has not been stopped. The salt is used to avoid synchronization of measurements
and is a small random value [AKZ99].4 With Fig. 4.11, we can see that stopping a
measurement by calling the stop_measurement does not apply immediately and an
ultimate probe is sent after such a call. We can also see that there is never more that
one entry par <source, destination> pair in the queue which is optimal from a memory
point of view.

Fig. 4.12 shows how the ICMP port unreachable is processed by our module.

It is not possible, without changing XORP to associate a time to an event on a socket.
This explains why line 0 is required in the algorithm of Fig. 4.12. The retrieval of
the time has to be carried out as soon as possible to limit the inaccuracy of the delay
estimation.

4In our implementation, the salt is zero.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 49

00 FOREACH src IN _to_measure
01 DO
02 WHILE _to_measure[src] IS NOT EMTPY
03 DO
04 entry := _to_measure[src].pop
05
06 IF entry.key > NOW
07 THEN
08 MOVE TO NEXT SOURCE
09 END
10
11 dst := entry.address
12 socketid := _sockets[src][dst]
13 _socket_info[socketid].last_call := NOW
14
15 send_UDP_probe(socketid, src, dst)
16
17 IF (src, dst) NOT STOPPED
18 THEN
19 entry.key := NOW

+ _dsts[src][dst].interval
+ salt

20 _to_measure[src].push(entry)
21 END
22 DONE
23 DONE

Figure 4.11: Measurement module loop method pseudo-code

SOCKET4_USER_0_1_ERROR_EVENT(socketid, error)
00 now := NOW
01 IF error = ICMP_PORT_UNREACHABLE
02 THEN
03 si := _socket_info[socketid]
04 measure := si.last_call
05 delay := now - measure
06 _destinations[si.source][si.dst].measurements.append(delay)
07 END

Figure 4.12: UDP ICMP port unreachable management

Prediction module example The Measurement module presented above does delay
measurement by the mean of UDP pings. The Prediction module example in this section
uses the round-trip-delays measured by the UDP ping measurement module to predict
the delay expected for the paths in the near future. The Prediction module simply av-
erages the last round-trip-delays measured for a <source, destination> IP pairs. The
average delay is the prediction of the delay for the path defined by the pair.

In this module, a path is defined by a source and a destination IP address. When a
start_prediction command is received by the prediction module, it requests the
UDP ping measurement module to start a measurement for the <source, destination>
IP pair that defines the path the delay prediction has to be performed for. The prediction
module then periodically retrieves the list of the last measurements for the path. Be-
cause the prediction module is the single one to use the UDP ping prediction module,
it requests the measurement module to flush its memory. The prediction module then
computes the average of the measured delays in the list. This average is considered as
the future value of the delay until the next retrieval of the measurements list for the path.

The prediction module maintains two datastructures. On the one hand, the _paths
map maps a path to a <source, destination> IP pair. On the other hand, the _delays
map stores the predicted delay for each path.

To speed-up the Querying module processing, the prediction module also pushes the
prediction delays to the Querying module path attributes collection. That is, when the
Querying module needs the delay prediction, it does not need to request the prediction
module. Doing so limits the use of XRLs and thus the number of context switches.

Our example implementation has no other intelligence. Indeed, the list of measure-
ments is retrieved at the same rate for each path (once every 10 seconds thanks to a
XORP periodic timer) and the prediction module requests the UDP ping measurement
module to send a probe every second. However, it would not be a hard task to modify
the module to enable an adaptive measurement rate and an adaptive measurements list
retrieval.

4.4 Conclusion

IDIPS is our service to meet path availability and performance objectives. IDIPS

architecture is composed of three modules. The Querying module receives the path
ranking requests from the client (e.g., a routing protocol) and computes the cost for the
paths contained in the request. The rank is based on the cost associated to the path and
computed by the cost functions. The cost functions implement the network operator
high level policies. Cost functions are fed by the prediction module. The prediction
module uses path measurement information collected by the measurement module. The
prediction module aims at predicting the future performance of the paths based on what
has been observed in the past by the measurement module. As its name reveal it, the
measurement module is a module in charge of measuring the paths. Measurements can
be either active or passive. The frequency and the types of measurements that need to be

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 51

performed by the measurement module are decided by the prediction module. Indeed,
the prediction module uses learning techniques to predict the future performance of the
paths. By comparing the predicted value and the measured value, it is thus possible to
determine the quality of the prediction and adapt the measurements accordingly.

IDIPS is designed to be flexible. First, measurements are abstracted into integers. So
that anything that can be translated into an integer (or a set of integers) can be interpreted
as a measurements by IDIPS. For example, the length of a BGP path is a measurement in
the IDIPS sense. IDIPS is a path ranking mechanism and to remain as generic as possible,
DPS also abstracts the path notion. A path is simply a source, destination pair. Sources
and destinations are simple opaque keys. A source (or destination) can thus be an IP
address, an IP prefix, or even a name. However, in the implementation, for efficiency
reasons, we implemented this as IP prefixes. Finally, the rank is an abstraction of the
costs. The lowest the rank value, the better the path. The rank is directly computed
from the costs. The cost of a path is implemented by a cost function. A cost function
abstracts a policy into a positive integer. The lowest the cost value of a path the better
it is. Cost functions must respect the transitivity relationship, which is not the case of
ranks. Ranks are abstractions of costs to hide computation and topology details to the
clients.

A detailed evaluation of the IDIPS architecture can be found in D4.3.

Chapter 5

Network recovery & resiliency / OSPF
SRG inference

5.1 Introduction

OSPF SRG inference is used to improve the recovery process of the OSPF protocol
for multiple link failures. For the inference module to be able to cluster and data-mine
failure occurences, these failures must first be detected by OSPF. Such functionality
must be added to the OSPF protocol message processing routine, since the link-state
advertisement (LSA) by definition only contain updates about the current routing topol-
ogy as seen by the advertising routers. This means that in order to detect link failures,
incoming LSAs must be correlated with LSAs received earlier. Any link failure de-
tected this way will then be reported to the inference module using the XRL dispatch
mechanism.

This failure data is used to create SRG inference tables which are then sent back to
the OSPF module for future usage. Consequently, functionality to receive these tables
and use them in the rerouting process again requires changes to the OSPF module XRL
interface and process.

In Sec. 5.2, we show the general flow and information models of the OSPF/SRG
inference integration. This include the high-level view of information exchange, and a
definition of link failure and SRG table information. Sec. 5.3 has the implementation of
these models into the EUA. This leads to a pair of data collection and control interfaces
from and into OSPF. We als odiscuss changes from the earlier Xorp 1.6 implementation
developed at IBBT.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 53

LSA from non-adjacent node

recompute
OSPF

Delay =

Trecomp

Figure 5.1: High-level flowchart for normal OSPF LSA processing

5.2 System design

This section describes the flow and information models that are used in the interac-
tion between the OSPF and inference modules.

The original OSPF process is shown on Fig. 5.1. LSAs from non-adjacent nodes are
processed as per section 13 of RFC 2328[Moy98], and then a recompute is scheduled
after a certain hold-off time Trecomp. This hold-off time serves to provide additional
routing stability. It allows for a certain batch of LSA updates (from several advertising
routers) to arrive during the hold-off period, after which a route recompute is performed
based on all newly received information. A recompute is not re-scheduled if a previous
one was still scheduled. This means that a recompute will occur Trecomp seconds after
a first of a batch of LSAs has been received, and that recomputes are spaced at least
Trecomp seconds apart, limiting the rate of recompute that can be performed. If no LSAs
are received after the last recompute, no further recomputes are scheduled normally; a
stable network topology will generally only cause recomputes through the LSA aging
(and expiration) process. The hard-coded default in Xorp for Trecomp is 1 second. For
reference, the minimum HELLO interval that can be configured is also 1 second, with
10–40s being a typically used value. This means that Trecomp is mostly sufficiently low
for regular operation of OSPF, still providing a fast enough response in terms of rout-
ing table and shortest path tree recomputation. Part of the SRG inference mechanism
however will serve to improve reaction speed of OSPF and therefore a method to lower
Trecomp without compromising OSPF stability will be presented.

On Fig. 5.2 we show a high level overview of the OSPF LSA reception and route
recomputation process, integrated with the normal OSPF flow. Some functionality and
checking is added in-between the LSA reception (and link-state database insertion) and
shortest-path tree recompute.

Upon reception of an LSA, the LSAs are now correlated with existing link-state
database entries. A general router LSA will contain a number of advertisements for
links (which can be of several types). These are stored into the link-state database as per
normal OSPF procedure. The occurrence of a link failure is defined as the disappearance
of such a link from a certain router LSA, i.e., when a certain link is present in the link-
state database, but not in the newly received LSA. When a link failure is detected, it is

update

part of

SRG?

LSA from non-adjacent node

SRG

known

?

recompute

Y

Y

N

OSPF

MLP

LSA trace

LSA

history
state

LSA SRG?

1
2
3
4

Y
N
N
Y

SRG

1,4

4,1

LSA SRG?

1
2
3
4

Y
N
N
Y

LSA

1
2
3
4

SRG

1,4

4,1

xrl

xrl

<LSA>:<boolean>

LSA SRG?

1
2
3
4

Y
N
N
Y

SRG

1,4

4,1<LSA>:<set of LSA>

<seq_number>

xrl

Delay =

Trecomp

Pruned Links = SRG

Delay = TSRG

Trecomp = 1s

Information

correlate with LSdb

failure

?

N

Y

N

Figure 5.2: High-level flowchart for SRG inference

reported as an LSA trace to the SRG inference running in the machine learning process
(MLP) through a data collection interface. When no failure is detected, SRG prediction
is not in effect and normal operation is resumed, scheduling a recompute with normal
hold-off time.

If however a failure is indeed detected, then the shared risk group prediction and
link pruning process is continued. First, the detected failing link is checked against a
list of known SRG, or rather, a list of links in known SRGs. For failures not belonging
to a known SRG, we abort the prediction process and continue with normally scheduled
recomputation, but note that the failure will have been reported to the SRG inference
module and will therefore soon appear in the list of known SRGs. Next, we check the
SRG table received from the SRG inference module to see if a suitable SRG can be iden-
tified. This may not be the case as the SRG table contains probabilities P (SRGi|linkj),
indicating the (predicted) probability SRGi will occur upon detection of linkj failing.
For a certain link A, none of the P (SRGi|A) may exceed a set threshold, in which case
no SRG can be identified with sufficient confidence.

If an SRG can be inferred, the SRG is expanded into a set of links which become a
list of pruned links. These links will be filtered out in the shortest-path tree recomputa-
tion process (which has been modified in order to do this). The recompute is scheduled
with hold-off time TSRG, which is shorter than the default Trecomp. Stability is ensured
as the SRG inference mechanism reduces the number of routing recomputations.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 55

Normal_LSA = “link i is up”

Failure_LSA = “link i is down”

SRG = set of Failure_LSA

SRG_set = set of SRG

SRG_table = set of Failure_LSA x set of SRG → double

Figure 5.3: Information model

The list of known SRGs and SRG table containing predictive probabilities is re-
ceived by the OSPF module from the SRG inference module through a control interface.
Note that the sending of SRGs and SRG table is shown as two separate information ex-
changes on the figure, though generally these can be performed together through a single
XRL dispatch.

Several types of information containers are necessary for the SRG inference mech-
anism and its implementation in the OSFP module. Some additional state is added
to OSPF using these containers. Fig. 5.3 shows these containers used in storing and
exchanging data. A Normal_LSA is provided as reference. It is a representation
of a ’link’ block in a OSPF router LSA. It indicates a certain link is up (available in
the topology), and contains all information to uniquely identify this link. Conversely,
Failure_LSA is similar to Normal_LSA, however it indicates the identified link is in
fact down (failing). It is the result of the correlation between incoming Normal_LSAs
and Normal_LSAs stored in the link-state database; in fact, the Failure_LSAs are
Normal_LSAs extracted from the link-state database (see Sec. 5.3 for more informa-
tion). All other information containers build on this Failure_LSA type.

A shared risk group (SRG) is a set of such Failure_LSAs. This means that an
SRG can easily be broken up in its constituent Failure_LSAs (the links of the shared
risk group) for comparison with failing links or expansion into a set of links to be pruned
from the topology.

SRG_set contains a set of shared risk groups. SRG_set as a state in the OSPF mod-
ule contains the list of known SRGs mentioned earlier; it uses the SRG_set container
type.

SRG_table is a two-dimensional table, giving a floating point value (probability)
for (Failure_LSA, SRG) pairs. As a state SRG_table, the SRG inference table is
stored as an additional state in the OSPF module. The inference table is serialized form
of the information learned in the MLP. The total state inside the MLP may be quite a
bit larger than the inference table itself, since it is not a ’snapshot’ of current inference
knowledge but is also used to continue learning with future data collection.

LSA

L1
L2
…

Lm

SRG1 SRG2 … SRGn

P(SRG1|L1)

{L}

P(SRG2|L1) P(SRGn|L1) P({L1}|L1)

P(SRG1|L2) P(SRG2|L2) P(SRGn|L2) P({L2}|L2)

P(SRG1|Lm) P(SRG2|Lm) P(SRGn|Lm) P({Lm}|Lm)

…
…
…
…

…… … …

Figure 5.4: Outline of SRG table

Finally, two further states are added to the OSPF module. Failing_links is a list
of links to be pruned at the next recomputation step. Since recomputation is scheduled
somewhere into the future (at most TSRG later when an SRG can be inferred), this list
needs to be stored temporarily. Mostly this list will be empty under normal operation.
It may also be updated a couple of times as each router LSA is received, before the
final recomputation is performed. Failing_links is a set of Failure_LSAs, so it
has the same type as SRG. SRG_links contains the list of all links inside one (or more)
known SRG. It is the union of SRGs in SRG_set (and therefore of type SRG). It may be
constructed ad-hoc from the list of known SRGs when needed, but is kept as a state to
facilitate look-up in checking whether a Failure_LSA is a known SRG link.

Fig. 5.4 shows the general outline of the SRG table. It is used to determine probabil-
ities for a certain failing link or LSA (a row in the table). The columns provide occur-
rence probabilities for each SRG. The sum of a row of probabilities

∑n
j=1 P (SRGj|Li)

should be ≤ 1. The final column in the figure represents the probability of a singleton
SRG {Li} occurring, consisting of the failing link Li itself. Whether this last column is
sent from the inference module to OSPF is determined by the assumption made about
the sum of probabilities. If we assume the sum of a row of probabilities is exactly 1,
then P ({Li}|Li) is the left-over probability 1−∑n

j=1 P (SRGj|Li) and does not need to
be included. Otherwise it will be included, and there will still be a left-over probability
1 −∑n

j=1 P (SRGj|Li) − P ({Li}|Li). It can be used to assign weight and/or confi-
dence in the SRG table to a row of probabilities. Note that {Li} is itself of type SRG,
like SRGj so there are no typing problems with its inclusion as an SRG in SRG_table
or SRG_set.

5.3 Implementation

This section details the process and data models that were constructed, starting from
the general design of the SRG inference mechanism. We concentrate on the changes to
the OSPF module in terms of code. Also, we explain the XRL interfaces needed for this
use case.

Fig. 5.5 briefly shows the interaction between the relevant code paths in the OSPF
and MLP module. A number of methods corresponding with events triggered through
XRL messages have been changed or added. The figure shows these added or changed

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 57

eezrezrezrzerzerzerezrezrzer

OSPF:

MLP:

LSA

recompute

SRG

TCP/IP

MLP

self

receive_lsas()

Send to MLP

routing_schedule_total_recompute()

receive_srgs()
receive_srgtable()

routing_total_recomputeV2()
RFC 2328 16.1–4

RFC 2328 13 (validate)

spt.compute()

LSA recv_linkfailure()

SRG

inferenc

Prepare SRG_table
Send to OSPF

AreaRouter::routing_router_lsaV2()

if down

hardware

new_router_links() routing_schedule_total_recompute()

failing links

process flow

state read

state create

event

state

event sched./entry

deserialize

1

1

1

1

2

2

3

3

SRGs

SRG table

Send to MLP 3

Figure 5.5: OSPF process flow

events: LSA reception event, SRG reception event, hardware interface down event and
recompute event for the OSPF module. LSA trace reception event for the MLP module
(running the SRG inference). The interactions with state are shown on the figure through
arrows indicating either state created or read. The calling of other events is shown by
small circled numbers.

On the MLP side of the process flow, the reception of link failures as LSA traces in
recv_linkfailure() leads to a straight-forward update and learning phase gov-
erned by the implemented SRG inference algorithm, resulting in a SRG inference table
that is passed back to the OSPF module causing an SRG reception event. The sending
of LSA traces is initiated in the OSPF module for topology change events, i.e. external
LSA reception or interface up/down hardware triggers.

On the OSPF side of the process flow, an SRG reception event is added (which
requires additions to the XRL interface of OSPF, as detailed below). The SRG reception
event receives SRG inference information an deserialized it into usable SRG_set and
SRG_table states, which are used by the prediction and pruning functions.

The LSA reception (triggered by a OSPF protocol message from an external router)
and interface down events are changed so that they now include checking for link failure
(correlating with the link-state database), sending failure to the MLP, predicting using
SRG inference table state, filling links to be pruned into the Failing_links state, and
finally scheduling a routing_total_recomputeV2() event with the appropriate
hold-off time. Note that the SRG_links state is omitted for clarity.

Finally, the recompute event is changed to prune links in Failing_links from the
topology graph before execute the shortest-path tree recomputation (which then leads to
filling in the routing tables).

(LSdb_links ∩ RLSA) \ update_links

(old) LSdb

RLSA

RLSAa RLSAb

RLSAdRLSAc

RLSA update

rl1

rl4

rl3

rl2

rl5

Figure 5.6: Correlating incoming LSAs with old link-state database to find failing links

LSA SRG?

1
2
3
4

Y
N
N
Y

SRG1 SRG2 … SRGn

p2(1)

0

0

p2(4)

pn(1)

0

0

pn(4)

p1(1)

0

0

p1(4)

in
p
u
t

o
u
tp

u
t

RLSA update

LSdb

LSdb

u
p

d
a

te

correlate

failure

MLP
xrl

Set of SRGs

SRG1

SRG2 SRG3

Set of SRG links

1 2 3 4

correlate

1

Failing link(s)
look-up

1 4

Predicted failing link(s) Predicted failing SRG(s)

OR

all links of interest

that are currently failing==

SRG1

(LSdb links \ update links) ∩ RLSA

SRG links \ LSdb links

Example for link 1 failing

1

“stale” db

Figure 5.7: Link failure detection and failing links update

Fig. 5.6 shows how link failure are identified in the receive_lsas() code path.
The (old) link-state database contains a set of router LSAs, each consisting of a number
of router links. When a router LSA is received, we find the corresponding router LSA in
the old link-state database (LSdb∩RLSA), and subtract the set of links in the updated
router LSA from this set. This identifies the failing router links.

On Fig. 5.6, we see the full link failure detection and failing links update (through in-
ference) process. We show this in terms of input to, and output from the procedure. Link
failure detection on the top-right is done as in the previous figure. From the SRG_set,
we build a set of SRG links SRG_links (this can be done in this code path, or at the time
of reception of a SRG inference table update). With the SRG_links set, we can find all
failing links of interest in the currently known topology (available in the update link-

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 59

SRG links \ LSdb links

(new) LSdb
SRG links

RLSAa RLSAb

RLSAdRLSAc

rl3 rl2

rl5

rl1 rl4

rl9
rl8

rl10

rl6
rl7

rl11

rl13

rl12

(old) LSdb

Figure 5.8: Correlating update link-state database and set of SRG links to find list of
failing links of interest

LSdb

in
p

u
t

1 4

Predicted failing link(s)

2 3 4

LSdb topology links

SRG1

Predicted failing SRG(s)

OR

4

Links to be pruned

2 3

Pruned topology links

Example for link 1 failing

prune

o
u

tp
u

t

Figure 5.9: Use of set of failing links in pruning the shortest-path table

state database). Failing links of interest are links that are failing and part of SRG_links,
since it is for these links we have predictive probabilities available in SRG_table. Using
this set of failing links of interest, we infer predicted failing links or shared risk groups,
which are then finally expanded and stored and Failing_links.

Fig. 5.8 shows, for an example, how to determine this set of failing links of interest.

Failing_links is used in pruning the topology before shortest-path tree recompute
(Fig. 5.9), in the routing_total_recomputeV2() code path.

Link failures can be detected basically with the update of router LSAs
(RLSA). These updates can occur in two different types. On the one hand,
there are remote RLSA updates received through OSPF protocol messages
(receive_lsa() code path as explained above—this code path is in fact im-
plemented in a method Area_router::receive_lsas() of the Area_router
class (which provides the area routing functionality of OSPF). On the other

RLSA update

LSdb

RLSA updateRLSA update

Peer::event_interface_down()

update_router_links()

get_area_router()->new_router_links

AreaRouter<A>::new_router_links()

refresh_router_lsa();

update_router_links()

check_failing_links()

routing_schedule_total_recompute()

AreaRouter<A>::receive_lsas()

check for missing links

update _db (with RFC filtering)

check_failing_links()

routing_schedule_total_recompute()

if_down event

RLSA update

Build router lsa

Reschedule refresh_router_lsa

u
p
d
a
te

update

routing_schedule_total_recompute(bool)

Figure 5.10: Use of set of failing links in pruning the shortest-path table

hand, these update can have a local trigger - such as an network interface
up/down event (e.g. implemented in Peer::event_interface_down()
). However, they can also be caused by periodic local RLSA refresh
(Area_router::refresh_router_lsa()) or the discovery of new (or
changed) local router links (Area_router::new_router_links()). The inter-
action of these methods is shown on Fig. 5.10. Most of the functionality for detecting
link failures and inferring SRGs is done in check_failing_links(), which calls
the functionality that was added to the OSPF module. A bool parameter was added
to the routing_schedule_total_recomputeV2(bool = false) method,
indicating an expedited recompute scheduling in case an SRG was inferred. TSRG is
used when this parameter is true, otherwise the original Trecomp is used.

Fig. 5.11 shows where the states mentioned earlier are implemented in the OSPF
module. Failure_LSAs are implemented as a RouterLink which is used inter-
nally in the Xorp OSPF code for storing router links from router LSAs. The proba-
bilities in SRG_table are stored using floats. Failing_links is used only within the
Area_router class, so the data structure is defined in area_router.hh as _failing_links.
The other states are defined in ospf.hh: SRG_set as _srgs, SRG_links as _srglinks
and SRG_table as _srgtable.

The RouterLink corresponds to the structure of router links and encapsulating
router LSA as defined by the OSPF protocol (Fig. 5.12). To identify a RouterLink
or in fact a Failure_LSA, we need the following information: LS age, Advertising
Router, LS sequence number, Link ID, Link Data, Type. These six pieces of data are
serialized when exchanging a Failure_LSA in-between the OSPF and MLP module.

To summarize the process flow, an example is given on Fig. 5.13 for the exchange
between OSPF (left) and MLP (right) upon the reception of an LSA and consequent
detection of a link failure. As the OSPF module has only one event loop, all code

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 61

• SRG set
vector<RouterLink> _srglinks;

• SRG links

vector<vector<RouterLink*> > _srgs

• SRG table

vector<vector<float> > _srgtable

• Failing links

vector<RouterLink*> _failing_links;

Set of SRGs

SRG2 SRG3SRG1

Set of SRG links

1 2 3 4

1

Failing link(s)

o
s
p
f

a
r
e
a
_
r
o
u
t
e
r

LSA SRG?

1
2
3
4

Y
N
N
Y

SRG1 SRG2 … SRGn

p2(1)

0

0

p2(4)

pn(1)

0

0

pn(4)

p1(1)

0

0

p1(4)

Table of probabilities

Figure 5.11: Implementation of state in OSPF module

paths must execute sequentially. Most importantly, this means that the response of the
MLP with update SRG inference information will typically be processed only after the
receive_lsas() code path has finished, and often will even not be in time for the
schedule reroute. Therefore, we envisioned the interaction such that the OSPF module
can do inference by itself from its existing SRG_table state, without having to wait
for an SRG inference answer from MLP, which would defeat the purpose of the SRG
inference mechanism, namely faster recovery times (for multiple link failures).

Still, we show the three relevant code paths for OSPF next to eachother on the figure,
but keep in mind that at all times, only one of them can be active—the MLP module of
course runs in a different process with its own eventloop, so it can perform calculations
and event handling parallel to the OSPF module.

In the example in the figure, the SRG inference table updates are sent during the
rerouting process, which causes the update of the OSPF SRG_table state to be delayed
until this recompute is finished.

De-coupling the data collection (link failure reporting) and control (SRG inference
table update) was done with the implementation over XRL in mind. There are two
versions of the SRG inference mechanism implementation and XRL interface defini-

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| LS age | Options | 1 |

+-+

| Link State ID |

+-+

| Advertising Router |

+-+

| LS sequence number |

+-+

| LS checksum | length |

+-+

| 0 |V|E|B| 0 | # links |

+-+

| Link ID |

+-+

| Link Data |

+-+

| Type | # TOS | metric |

+-+

| ... |

+-+

| TOS | 0 | TOS metric |

+-+

| Link ID |

+-+

| Link Data |

+-+

| ... |

R
o
u

te
rl
in

k
 1

R
o
u

te
rl
in

k
 2

Figure 5.12: Structure of router LSA and contained router links

tions. A first implementation uses Xorp 1.6 and was used as proof-of-concept during
the 2010 ECODE review, and was also used for public demonstration of the SRG infer-
ence technique[ea10, ea11]. We concentrate on the second implementation which uses
the EUA TCI and push mechanisms (based on Xorp 1.8).

The interface linkfail (Fig. 5.14) is used to receive LSA traces containing failing
links and must be implemented by the MLP. As can be seen, link_failure has as
parameters the LS age, Advertising Router, LS sequence number, Link ID, Link
Data, Type values that identify a failing link. These are passed as 32-bit numbers.

In the Xorp 1.6 case, the MLP registers with the router manager and advertises this
linkfail target in order to receive LSA traces from OSPF. This causes a problem within
Xorp 1.6 if the MLP goes offline and reconnects to the router manager. For performance
reasons, XRL look-up is cached for processes, an XRL target reconnecting with a dif-
ferent IP or port number causes an inconsistency in this cache, leading to an assertion
failure and finally a crash in the calling module (in this case OSPF). Modules imple-
menting targets should be brought up by the router manager only and not manually.

For the EUA-based implementation, target within the MLP are not allowed (they
cannot be advertised to the TCI), but instead a push mechanism is available, which
allows a module to push data to the MLP using a regular (non-target) call-back. In the
EUA case, the call-back and push will use the link_failure signature to send LSA
traces from OSPF to MLP. This data collection is mediated through a monitoring point
(MP) which in fact does implement the linkfail target. The MLP registers with the

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 63

receive_lsas
send lsa

pre-process

ML

build SRG table
receive_srgs

MLP

filter

check SRG

update prune table

recomputeid
le

w
a

it

update SRG table

create spt

add LSAs or prune

dijkstra

routing table

finish up

OSFP

Figure 5.13: Example of OSPF (left) and MLP (right) interaction in time

interface linkfail/1.0 {
/**
* Report failing link

*
* @param failing routerlink data

*/
link_failure?ls_age:u32&ls_seq:i32&ar:u32& \

rl_type:u32&rl_link_id:u32&rl_link_data:u32;
}

Figure 5.14: XRL interface for receiving link failure reports

MP (a module outside of OSPF), while OSPF sends the LSA traces to the MP, which
forwards the traces to the MLP.

This MP also implements the regular control of the OSPF function, in that its target
will accept SRG inference table updates. Its interface is shown on Fig. 5.15.

failure_push and failure_cancel are used to (de)register interest with
the MP in receiving LSA trace updates (provided to the MP, regardless of interest
registration, from OSPF through the MP’s linkfail interface). set_srgs and
set_srgtable are used to pass a set of SRGs or a full SRG table respectively.

set_srgs is used when loading a simple set of SRGs into OSPF’s SRG_set, where
prediction is then done using simple matching and no probability. This is only done
when the SRG inference algorithm in the MLP only uses clustering and does not cal-
culate probabilities. For set_srgtable, SRG_table but also SRG_set are updated
from the parameters passed (either set_srgs or set_srgtable should be called

interface eua_srg_mp/0.1 {
enable_eua_srg_mp ? enable:bool;
start_eua_srg_mp;

/**
* SRG table upload functionality

*/
set_srgs ? srgs:list<binary>
set_srgtable ? srgs:list<binary> & links:list<binary> & \

table:binary;

/**
* Linkfail push functionality

*/
failure_push ? cbxrl:txt & prefix:txt;
failure_cancel ? cbxrl:txt & prefix:txt;

}

Figure 5.15: XRL interface for the SRG monitoring point

for an SRG inference information update, not both).

The SRGs are presented a list of binary data. Each binary atom contains the infor-
mation of a single SRG. The atom itself is constructed from the concatenation of binary
data of links.

Links are presented a binary atom, which is the concatenation of the six 32-bit iden-
tifying numbers (in linkfail order). set_srgtable has a list of links as parame-
ters, identifying each of the rows of the SRG table.

The actual table data itself, i.e., the probability values are presented as binary atom
as well. Normally this is just the concatenation of n floats (in network byte order),
where n = |srgs|×|links|. However, the binary format for the table parameter is not
fixed, for example, a format may be decided to represent partial updates, or compressed
data.

Note that in the earlier Xorp 1.6 implementations, loosely typed lists were allowed
(e.g., srgs:list instead of srgs:list<binary>. The earlier implementation
uses nested lists of u32 (32-bit number) to represent the SRGs, where a link is a list
of numbers, and SRGs are a list of link (a list of a list of numbers). Xorp 1.8 does not
support nested list (i.e., srgs:list<list<u32> >, etc.) in interface definitions.

The SRG inference information is passed on to the OSPF module, which has some
changes to its interface to accept these uploads (Fig 5.16), matching the set_*methods
in the MP interface.

Fig. 5.17 provides a comparison between the first Xorp 1.6 implementation (on the
left), and the newer implementation using the EUA platform (on the right) for a three-
node network. In the EUA case, the TCI and SRG MP are added. Initially, this feature
seems to have little impact on the SRG inference, however, as Fig. 5.18 shows, it allows

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 65

interface ospfv2/0.1 {
...

/**
* Receive SRG updates (ECODE)

*/
recv_srgs ? srgs:list<binary>;
recv_srgtable ? srgs:list<binary> & links:list<binary> & \

table:binary;

...
}

Figure 5.16: Changes to the OSPF interface (partial)

OSPF

router

MLP

OSPF

router

MLP

OSPF

router

MLP

OSPF

MLP

MPTCI

OSPF

MLP

MPTCI

OSPF

MLP

MPTCI

Figure 5.17: High-level comparison of Xorp 1.6 (left) and EUA/Xorp 1.8 (right) imple-
mentation

for some interesting distributed/centralized SRG inference scenarios.

On the left of the figure, we see the scenario where a single MLP has control over
all of the network. This means it receives link failure LSA traces from all nodes, and
updates the SRG inference tables for all OSPF instances (presumably with the same
table data). This centralized scenario is not possible with the node local SRG inference
implementation on Xorp 1.6.

Similarly, we can keep a SRG inference MLP for each node (right part of the figure),
but use the TCI functionality to allow the MLPs of the nodes to communicate, e.g.,
exchanging inference model parameters or learned values.

OSPF

MLP

MPTCI

OSPF

MLP

MPTCI

OSPF

MLP

MPTCI

OSPF

MLP

MP

TCI

OSPF

MP

OSPF

MPTCI

TCITCI

Figure 5.18: Distributed/centralized SRG inference scenarios

5.4 Conclusion

We have presented an OSPF SRG (shared risk groups) inference mechanism to im-
prove the OSPF protocol recovery process in case of links failure. Our solution corre-
lates link-state advertisements received earlier from OSPF routers. We modified OSPF
link state packets to carry failure information. The failures discovered by OSPF are
reported in the EUA to the inference module with XRLs. Failure information is used to
infer SRG. The infered SRGs are then sent back to the OSPF module. Upon re-routing
event, OSPF uses the SRGs to determine to use the route presenting less failure risk.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 67

Chapter 6

Conclusion

In this deliverable, we presented how to design and implement in the ECODE Uni-
fied Architecture (EUA) representative use cases of the project.

On the one hand, adaptive sampling and anomaly detection are pure traffic moni-
toring engines that use learning engines to improve their efficiency. IDIPS, meanwhile,
acts as an aggregator of monitoring information for tools requiring to select the best
paths, for any arbitrary definition of best. To this aim, IDIPS provides a uniformed ar-
chitecture to use monitoring engines like an anomaly detection system or an adaptive
traffic sampling system. IDIPS also provides a simple interface for clients to obtain
informed path ranking based on these monitoring information. For compatibility rea-
sons with the existing flow monitors, our adaptive traffic sampling mechanism is not
implemented directly in XORP. However, to be integrated in the EUA, the adaptive
traffic sampling mechanism is interfaced with a wrapper that is able to translate EUA
requests into adaptive traffic sampling implementation primitives and vice versa. Fi-
nally, the network recovery & resiliency has been completely integrated into the EUA.
For the success of this integration the XORP OSPF implementation has been adapted
be integrated directly in the EUA as well.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 69

Bibliography

[AAS03] A. Akella, Shaikh A., and R. Sitaraman. A measurement-based analysis of
multihoming. In Proc. ACM SIGCOMM, August 2003.

[ACP09] G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou. Network
Anomaly Detection and Classification via Opportunistic Sampling. IEEE
Network, 23(1):6–12, January 2009.

[AGGR98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic Sub-
space Clustering of High Dimensional Data for Data Mining Applications.
In Proc. of the ACM SIGMOD International Conference on Management
of Data, 1998.

[AKZ99] G. Almes, S. Kalidindi, and M. Zekauskas. A Round-trip Delay Metric for
IPPM. RFC 2681 (Proposed Standard), September 1999.

[CCRK04] M. Costa, M. Castro, R. Rowstron, and P. Key. PIC: Practical Internet
coordinates for distance estimation. In Proc. 24th International Conference
on Distributed Computing Systems, March 2004.

[CIB+06] Gion Reto Cantieni, Gianluca Iannaccone, Chadi Barakat, Christophe Diot,
and Patrick Thiran. Reformulating the monitor placement problem: Opti-
mal networkwide sampling. In Proc. of CoNeXT, 2006.

[Cis00] Cisco. Netflow services and applications. White Paper, 2000.

[Cla04] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954
(Informational), October 2004.

[CM05] G. Cormode and S. Muthukrishnan. What’s New: Finding Significant Dif-
ferences in Network Data Streams. IEEE Transactions on Networking,
13(6):1219–1232, December 2005.

[DCKM04] F. Dabek, R. Cox, K. Kaashoek, and R. Morris. Vivaldi, a decentralized
network coordinated system. In Proc. ACM SIGCOMM, August 2004.

[DHKS09] Xenofontas Dimitropoulos, Paul Hurley, Andreas Kind, and Marc Stoeck-
lin. On the 95-percentile billing method. In Passive and Active
Measurements Conference (PAM), April 2009.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 71

[DHS01] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification - second
edition. Wiley Publisher, 2001.

[dLUB05] C. de Launois, S. Uhlig, and O. Bonaventure. Scalable route selection for
IPv6 multihomed sites. In Proc. IFIP Networking, May 2005.

[Dra03] R. Draves. Default Address Selection for Internet Protocol version 6 (IPv6).
RFC 3484 (Proposed Standard), February 2003.

[ea10] B. Puype et al. SRLG inference in OSPF for improved reconvergence after
failures. In Proceedings of joint ServiceWave 2010/FIA Ghent, December
2010.

[ea11] B. Puype et al. OSPF failure reconvergence through SRG inference
and prediction of link state advertisements. In Proceedings of ACM
SIGCOMM’11, pages 468–469, August 2011.

[EKSX96] M. Ester, H. Kriegel, J. Sander, and X. Xu. A Density-based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In Proc. of
2nd International Conference on Knowledge Discovery and Data Mining
(KDD 96), 1996.

[EV02] C. Estan and G. Varghese. New directions in traffic measurement and ac-
counting. In Proc. of ACM SIGCOMM, 2002.

[FJ05] A. Fred and A.K. Jain. Combining Multiple Clusterings Using Evi-
dence Accumulation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(6):835–850, June 2005.

[FJP+99] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gruniewicz, and Y. Jin. An
architecture for a global Internet host distance estimator service. In Proc.
IEEE INFOCOM, March 1999.

[FO09] G. Fernandes and P. Owezarski. Automated Classification of Network Traf-
fic Anomalies. In Proc. of 5th International ICST Conference on Security
and Privacy in Communication Networks, 2009.

[FR98] C. Fraley and A. E. Raftery. How Many Clusters? Which Clustering
Method? Answers Via Model-Based Cluster Analysis. The Computer
Journal, 41(8):578–588, 1998.

[GDZ06] R. Gao, C. Dovrolis, and E. Zegura. Avoiding oscillations due to intelligent
route control systems. In Proc. IEEE INFOCOM, April 2006.

[HHK03] Mark Handley, Orion Hodson, and Eddie Kohler. Xorp: an open platform
for network research. SIGCOMM Comput. Commun. Rev., 33:53–57, Jan-
uary 2003.

[HV03] N. Hohn and D. Veitch. Inverting sampled traffic. In Proc. of IMC, 2003.

[Jai10] A. K. Jain. Data Clustering: 50 Years Beyond K-Means. Pattern
Recognition Letters, 31(8):651–666, 2010.

[KME05] K. Keys, D. Moore, and C. Estan. A robust system for accurate real-time
summaries of internet traffic. In Proc. of SIGMETRICS, 2005.

[LCD04] A. Lakhina, M. Crovella, and C. Diot. Characterization of Network-Wide
Anomalies in Traffic Flows. In Proc. of 2nd ACM Internet Measurement
Conference, 2004.

[LGP+05] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft. On the accuracy
of embeddings for Internet coordinate systems. In Proc. USENIX Internet
Measurement Conference (IMC), October 2005.

[LGS07] J. Ledlie, P. Gardner, and M. I. Seltzer. Network coordinates in the
wild. In Proc. USENIX Symposium on Networked System Design and
Implementation (NSDI), April 2007.

[LHC03] H. Lim, J. C. Hou, and C.-H. Choi. Constructing internet coordinate sys-
tem based on delay measurement. In Proc. ACM SIGCOMM Internet
Measurement Conference (IMC), October 2003.

[LHC05] H. Lim, J. C. Hou, and C-H. Choi. Constructing Internet coordinate system
based on delay measurement. IEEE/ACM Transactions on Networking,
13(3):513–525, June 2005.

[Lib] Libpcap. Libpcap: a Portable C/C++ Library for Network Traffic Capture.
http://www.tcpdump.org.

[LPS06] J. Ledlie, P. Pietzuch, and M. I. Seltzer. Stable and accurate network co-
ordinates. In Proc. International Conference on Distributed Computing
Systems, July 2006.

[MCO11] J. Mazel, P. Casas, and P. Owezarski. Sub-Space Clustering & Evidence
Accumulation for Unsupervised Network Anomaly Detection. In Proc.
of 3rd COST-TMA International Workshop on Traffic Monitoring and
Analysis, April 2011.

[Moy98] J. Moy. OSPF Version 2. RFC 2328 (Standard), April 1998. Updated by
RFC 5709.

[MS04] Y. Mao and L. Saul. Modeling distances in large-scale networks by matrix
factorization. In Proc. ACM SIGCOMM Internet Measurement Conference
(IMC), October 2004.

[NB09] E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming Shim Protocol
for IPv6. RFC 5533 (Proposed Standard), June 2009.

[NZ02] T. Ng and H. Zhang. Predicting Internet network distance with coordinates-
based approaches. In Proc. IEEE INFOCOM, June 2002.

[NZ04] T. S. E. Ng and H. Zhang. A network positioning system for the Internet.
In Proc. USENIX Annual Technical Conference, June 2004.

FP7 ECODE Project (223936) Deliverable D2.3.- Low-level design specification of the machine learning engine Page 73

http://www.tcpdump.org

[Pap07] V. Pappas. Coordinate-based routing for overlay networks. In Proc.
International Conference on Computer Communications and Networks
(ICCCN), August 2007.

[PCW+03] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti. Lighthouses
for scalable distributed location. In Proc. 2nd International Workshop on
Peer-to-Peer Systems (IPTPS), February 2003.

[PHL04] L. Parsons, E. Haque, and H. Liu. Subspace Clustering for High Dimen-
sional Data: a Review. ACM SIGKDD Explorations Newsletter - Special
Issue on Learning from Imbalanced Datasets, 6(1), June 2004.

[PLMS06] P. Pietzuch, J. Ledlie, M. Mitzenmacher, and M. Seltzer. Network-aware
overlays with network coordinates. In Proc. IEEE International Conference
on Distributed Computed Systems Workshops (ICDCSW), July 2006.

[PPZ+08] Abhinav Pathak, Himabindu Pucha, Ying Zhang, Y. Charlie Hu, and
Z. Morley Mao. A measurement study of internet delay asymmetry.
In Proceedings of the 9th international conference on Passive and active
network measurement, PAM’08, pages 182–191, Berlin, Heidelberg, 2008.
Springer-Verlag.

[RLH06] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271 (Draft Standard), January 2006.

[RMK+08] V. Ramasubramanian, D. Malhki, F. Kuhn, I. Abraham, M. Balakrishnan,
A. Gupta, and A. Akella. A unified network coordinate system for band-
width and latency. Technical Report MSR-TR-2008-124, Microsoft Re-
search, September 2008.

[ST03] Y. Shavitt and T. Tankel. Big-bang simulation for embedding network dis-
tances in euclidean space. In Proc. IEEE INFOCOM, March 2003.

[VS10] Hui Zhang Vyas Sekar, Michael K Reiter. Revisiting the case for a mini-
malist approach for network flow monitoring. In Proc. of IMC, 2010.

[WSS05] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: a lightweight network
location service without virtual coordinates. In Proc. ACM SIGCOMM,
August 2005.

[WZA06] N. Williams, S. Zander, and G. Armitage. A Preliminary Performance
Comparison of Five Machine Learning Algorithms for Practical IP Traffic
Flow Classification. ACM SIGCOMM Computer Communication Review,
36(5), October 2006.

[YRCR04] Ming Yang, X. Rong, Li Huimin Chen, and Nageswara S. V. Rao. Pre-
dicting internet end-to-end delay: an overview. In in Proc. of 36th IEEE
Southeastern Symposium on Systems Theory, pages 210–214, 2004.

	Introduction
	Scope of Deliverable
	Use cases
	a1) Adaptive traffic sampling
	a3) Cooperative intrusion and attack / anomaly detection
	b1) Path availability and IDIPS
	b2) Network recovery & resiliency / OSPF SRG inference

	Structure of Document

	Adaptive traffic sampling
	Introduction
	System design
	Implementation
	Conclusion

	Cooperative intrusion and attack / anomaly detection
	Introduction
	System design
	Multi-Resolution Change-Detection (MRCD) Module
	Unsupervised Analysis Module
	Characterization Module

	Implementation
	Conclusion

	Path availability and IDIPS
	Introduction
	System design
	Querying module
	Measurement Module
	Prediction Module

	Implementation
	High Level Cost Functions Implementation
	Examples of Idips module implementation

	Conclusion

	Network recovery & resiliency / OSPF SRG inference
	Introduction
	System design
	Implementation
	Conclusion

	Conclusion
	References

